19 resultados para Reliability assessments
Resumo:
julkaisumaa: NLD
Resumo:
Escherichia coli K-12 (pEGFPluxABCDEAmp) (E. coli-lux), constitutively emitting bioluminescence (BL), was constructed and its BL emitting properties tested in different growth and killing conditions. The BL emission directly correlated with the number of viable E. coli-lux cells, and when subjected to the antimicrobial agent, the diminishment of the BL signal was linked directly to the number of killed bacterial cells. The method provided a very convenient application, especially when compared to conventional plate counting assays. This novel real-time based method was utilized in both immunological and toxicological assessments. The parameters such as the activation phase, the lytic phase and the capacity of the killing of the serum complement system were specified not only in humans but also in other species. E. coli-lux was also successfully used to study the antimicrobial activities of insect haemolymph. The mechanisms of neutrophil activity, like that of a myeloperoxidase (MPO)-H2O2-halide system, were studied using the E. coli-lux approach. The fundamental role of MPO was challenged, since during the actual killing in described circumstances in phagolysosome the MPO system was inactivated and chlorination halted. The toxicological test system, assessing indoor air total toxicity, particularly suitable for suspected mold damages, was designed based on the E. coli-lux method. Susceptibility to the vast number of various toxins, both pure chemicals and dust samples from the buildings and extracts from molds, were investigated. The E. coli-lux application was found to possess high sensitivity and specificity attributes. Alongside the analysis system, the sampling kit for indoor dust was engineered based on the swipe stick and the container. The combination of practical specimen collector and convenient analysis system provided accurate toxic data from the dust sample within hours. Neutrophils are good indicators of the pathophysiological state of the individual, and they can be utilized as a toxicological probe due to their ability to emit chemiluminescence (CL). Neutrophils can either be used as probe cells, directly exposed to the agent studied, or they can act as indicators of the whole biological system exposed to the agent. Human neutrophils were exposed to the same toxins as tested with the E. coli-lux system and measured as luminol amplified CL emission. The influence of the toxins on the individuals was investigated by exposing rats with moniliniformin, the mycotoxin commonly present in Finnish grains. The activity of the rat neutrophils was found to decrease significantly during the 28 days of exposure.
Resumo:
This report introduces the ENPI project called “EMIR - Exploitation of Municipal and Industrial Residues” which was executed in a co-operation between Lappeenranta University of Technology (LUT), Saint Petersburg State University of Economics (SPbSUE), Saint Petersburg State Technical University of Plant Polymers (SPbSTUPP) and industrial partners from both Leningrad Region (LR), Russia and Finland. The main targets of the research were to identify the possibilities for deinking sludge management scenarios in co-operation with partner companies, to compare the sustainability of the alternatives, and to provide recommendations for the companies in the Leningrad Region on how to best manage deinking sludge. During the literature review, 24 deinking sludge utilization possibilities were identified, the majority falling under material recovery. Furthermore, 11 potential utilizers of deinking sludge were found within the search area determined by the transportation cost. Each potential utilizer was directly contacted in order to establish cooperation for deinking sludge utilization. Finally, four companies, namely, “Finnsementti” – a cement plant in Finland (S1), “St.Gobian Weber” – a light-weight aggregate plant in Finland (S2), “LSR-Cement” – a cement plant in LR (S3), and “Rockwool” – a stone wool plant in LR (S4) were seen as the most promising partners and were included in the economic and environmental assessments. Economic assessment using cost-benefit analysis (CBA) indicated that substitution of heavy fuel oil with dry deinking sludge in S2 was the most feasible option with a benefit/cost ratio (BCR) of 3.6 when all the sludge was utilized. At the same time, the use of 15% of the total sludge amount (the amount that could potentially be treated in the scenario) resulted in a BCR of only 0.16. The use of dry deinking sludge in the production of cement (S3) is a slightly more feasible option with a BCR of 1.1. The use of sludge in stone wool production is feasible only when all the deinking sludge is used and burned in an existing incineration plant. The least economically feasible utilization possibility is the use of sludge in cement production in Finland (S1) due to the high gate fee charged. Environmental assessment was performed applying internationally recognized life cycle assessment (LCA) methodologies: ISO 14040 and ISO 14044. The results of a consequential LCA stated that only S1 and S2 lead to a reduction of all environmental impacts within the impact categories chosen compared to the baseline scenario where deinking sludge is landfilled. Considering S1, the largest reduction of 13% was achieved for the global warming potential (GWP), whereas for S2, the largest decrease of abiotic depletion potential (ADP) was by 1.7%, the eutrophication potential (EP) by 1.8%, and a GWP of 2.1% was documented. In S3, the most notable increase of ADP and acidification potential (AP) by 2.6 and 1.5% was indicated, while the GWP was reduced by 12%, the largest out of all the impact categories. In S4, ADP and AP increased by 2.3 and 2.1% respectively, whereas ODP was reduced by 25%. During LCA, it was noticed that substitution of fuels causes a greater reduction of environmental impact (S1 and S2) than substitution of raw materials (S3 and S4). Despite a number of economically and environmentally acceptable deinking sludge utilization methods being assessed in the research, evaluation of bottlenecks and communications with companies’ representatives uncovered the fact that the availability of the raw materials consumed, and the risks associated with technological problems resulting from the sludge utilization, limited the willingness of industrial partners to start deinking sludge utilization. The research results are of high value for decision-makers at already existing paper mills since the result provide insights regarding alternatives to the deinking sludge utilization possibilities already applied. Thus, the research results support the maximum economic and environmental value recovery from waste paper utilization.
Electromagnetic and thermal design of a multilevel converter with high power density and reliability
Resumo:
Electric energy demand has been growing constantly as the global population increases. To avoid electric energy shortage, renewable energy sources and energy conservation are emphasized all over the world. The role of power electronics in energy saving and development of renewable energy systems is significant. Power electronics is applied in wind, solar, fuel cell, and micro turbine energy systems for the energy conversion and control. The use of power electronics introduces an energy saving potential in such applications as motors, lighting, home appliances, and consumer electronics. Despite the advantages of power converters, their penetration into the market requires that they have a set of characteristics such as high reliability and power density, cost effectiveness, and low weight, which are dictated by the emerging applications. In association with the increasing requirements, the design of the power converter is becoming more complicated, and thus, a multidisciplinary approach to the modelling of the converter is required. In this doctoral dissertation, methods and models are developed for the design of a multilevel power converter and the analysis of the related electromagnetic, thermal, and reliability issues. The focus is on the design of the main circuit. The electromagnetic model of the laminated busbar system and the IGBT modules is established with the aim of minimizing the stray inductance of the commutation loops that degrade the converter power capability. The circular busbar system is proposed to achieve equal current sharing among parallel-connected devices and implemented in the non-destructive test set-up. In addition to the electromagnetic model, a thermal model of the laminated busbar system is developed based on a lumped parameter thermal model. The temperature and temperature-dependent power losses of the busbars are estimated by the proposed algorithm. The Joule losses produced by non-sinusoidal currents flowing through the busbars in the converter are estimated taking into account the skin and proximity effects, which have a strong influence on the AC resistance of the busbars. The lifetime estimation algorithm was implemented to investigate the influence of the cooling solution on the reliability of the IGBT modules. As efficient cooling solutions have a low thermal inertia, they cause excessive temperature cycling of the IGBTs. Thus, a reliability analysis is required when selecting the cooling solutions for a particular application. The control of the cooling solution based on the use of a heat flux sensor is proposed to reduce the amplitude of the temperature cycles. The developed methods and models are verified experimentally by a laboratory prototype.