21 resultados para Plants - Analysis
Resumo:
Työn tavoitteena on kehittää ABB:lle palvelutuote, jota voidaan tarjota voimalaitosasiakkaille. Uuden palvelutuotteen tulee vastata ABB:n uuden strategian linjauksiin. Palvelulla tarjotaan asiakkaille 1.1.2015 voimaan tulleen energiatehokkuuslain määrittelemien pakollisten toimenpiteiden suoritusta. Työssä kerätään, käsitellään ja analysoidaan tietoa voimalaitosasiakkaille suunnatun palvelun tuotteistamisprosessin päätöksenteon tueksi. Palvelutuotteen kehittämistä varten tutkitaan ABB:n nykyisiä palvelutuotteita, osaamista ja referenssi projekteja, energiatehokkuuslakia, voimalaitosten energiatehokkuus-potentiaalia ja erilaisia energiakatselmusmalleja. Päätöksenteon tueksi tehdään referenssiprojektina energia-analyysi voimalaitokselle, jossa voimalaitoksesta tehdään ipsePRO simulointiohjelmalla mallinnus. Mallinnuksen ja koeajojen avulla tutkitaan voimalaitoksen minimikuorman optimointia. Markkinatutkimuksessa selvitetään lainsäädännön vaikutusta, nykyistä markkinatilannetta, potentiaalisia asiakkaita, kilpailijoita ja ABB:n mahdollisuuksia toimia alalla SWOT–analyysin avulla. Tutkimuksen tulosten perusteella tehdään päätös tuotteistaa voimalaitoksille palvelutuote, joka sisältää kaikki toimet energiatehokkuuslain asettamien vaatimusten täyttämiseen yrityksen energiakatselmuksen vastuuhenkilön, energiakatselmuksen ja kohdekatselmuksien teon osalta. Lisäksi työn aikana Energiavirasto myönsi ABB:lle pätevyyden toimia yrityksen energiakatselmuksen vastuuhenkilönä, mikä on edellytyksenä palvelun tarjoamiselle.
Resumo:
Currently, the power generation is one of the most significant life aspects for the whole man-kind. Barely one can imagine our life without electricity and thermal energy. Thus, different technologies for producing those types of energy need to be used. Each of those technologies will always have their own advantages and disadvantages. Nevertheless, every technology must satisfy such requirements as efficiency, ecology safety and reliability. In the matter of the power generation with nuclear energy utilization these requirements needs to be highly main-tained, especially since accidents on nuclear power plants may cause very long term deadly consequences. In order to prevent possible disasters related to the accident on a nuclear power plant strong and powerful algorithms were invented in last decades. Such algorithms are able to manage calculations of different physical processes and phenomena of real facilities. How-ever, the results acquired by the computing must be verified with experimental data.
Resumo:
Tannins, typically segregated into two major groups, the hydrolyzable tannins (HTs) and the proanthocyanidins (PAs), are plant polyphenolic secondary metabolites found throughout the plant kingdom. On one hand, tannins may cause harmful nutritional effects on herbivores, for example insects, and hence they work as plants’ defense against plant-eating animals. On the other hand, they may affect positively some herbivores, such as mammals, for example by their antioxidant, antimicrobial, anti-inflammatory or anticarcinogenic activities. This thesis focuses on understanding the bioactivity of plant tannins, their anthelmintic properties and the tools used for the qualitative and quantitative analysis of this endless source of structural diversity. The first part of the experimental work focused on the development of ultra-high performance liquid chromatography−tandem mass spectrometry (UHPLC-MS/MS) based methods for the rapid fingerprint analysis of bioactive polyphenols, especially tannins. In the second part of the experimental work the in vitro activity of isolated and purified HTs and their hydrolysis product, gallic acid, was tested against egg hatching and larval motility of two larval developmental stages, L1 and L2, of a common ruminant gastrointestinal parasite, Haemonchus contortus. The results indicated clear relationships between the HT structure and the anthelmintic activity. The activity of the studied compounds depended on many structural features, including size, functional groups present in the structure, and the structural rigidness. To further understand tannin bioactivity on a molecular level, the interaction between bovine serum albumin (BSA), and seven HTs and epigallocatechin gallate was examined. The objective was to define the effect of pH on the formation on tannin–protein complexes and to evaluate the stability of the formed complexes by gel electrophoresis and MALDI-TOF-MS. The results indicated that more basic pH values had a stabilizing effect on the tannin–protein complexes and that the tannin oxidative activity was directly linked with their tendency to form covalently stabilized complexes with BSA at increased pH.
Resumo:
With growing demand for liquefied natural gas (LNG) and liquid transportation fuels, and concerns about climate change and causes of greenhouse gas emissions, this master’s thesis introduces a new value chain design for LNG and transportation fuels and respective fundamental business cases based on hybrid PV-Wind power plants. The value chains are composed of renewable electricity (RE) converted by power-to-gas (PtG), gas-to-liquids (GtL) or power-to-liquids (PtL) facilities into SNG (which is finally liquefied into LNG) or synthetic liquid fuels, mainly diesel, respectively. The RE-LNG or RE-diesel are drop-in fuels to the current energy system and can be traded everywhere in the world. The calculations for the hybrid PV-Wind power plants, electrolysis, methanation (H2tSNG), hydrogen-to-liquids (H2tL), GtL and LNG value chain are performed based on both annual full load hours (FLh) and hourly analysis. Results show that the proposed RE-LNG produced in Patagonia, as the study case, is competitive with conventional LNG in Japan for crude oil prices within a minimum price range of about 87 - 145 USD/barrel (20 – 26 USD/MBtu of LNG production cost) and the proposed RE-diesel is competitive with conventional diesel in the European Union (EU) for crude oil prices within a minimum price range of about 79 - 135 USD/barrel (0.44 – 0.75 €/l of diesel production cost), depending on the chosen specific value chain and assumptions for cost of capital, available oxygen sales and CO2 emission costs. RE-LNG or RE-diesel could become competitive with conventional fuels from an economic perspective, while removing environmental concerns. The RE-PtX value chain needs to be located at the best complementing solar and wind sites in the world combined with a de-risking strategy. This could be an opportunity for many countries to satisfy their fuel demand locally. It is also a specific business case for countries with excellent solar and wind resources to export carbon-neutral hydrocarbons, when the decrease in production cost is considerably more than the shipping cost. This is a unique opportunity to export carbon-neutral hydrocarbons around the world where the environmental limitations on conventional hydrocarbons are getting tighter.
Resumo:
Carbonic anhydrases are enzymes that are ubiquitously found in all organisms that are engaged in catalyzing the hydration of carbon dioxide to form bicarbonate and proton and vice versa. They are crucial in the process of respiration, bone resorption, pH regulation, ion transport, and photosynthesis in plants. Out of the five classes of carbonic anhydrase α, β, γ, δ, ζ this study focused in the α carbonic anhydrases. This class of CAs constitute of 16 subfamilies in mammals that include 3 non-active enzymes known as Carbonic Anhydrase Related Proteins. The inactiveness of these enzymes is due to the loss of one or more Histidine residues in the active site. This thesis was conducted based on the aim of studying evolutionary analysis of carbonic anhydrase sequences from organisms spanning from the Cambrian age. It was carried out in two phases. The first phase was the sequence collection, which involved many biological sequence databases as a source. The scope of this segment included sequence alignments and analysis of the sequence manually and in an automated form incorporating few analysis tools. The second Phase was phylogenetic analysis and exploring the subcellular location of the proteins, which was key for the evolutionary analysis. Through the medium of the methods conducted with respect to the phases mentioned above, it was possible to accomplish the desired result. Certain thought-provoking sequences were come across and analyzed thoroughly. Whereas, Phylogenetics showed interesting results to bolster previous findings and new findings as well which lay bedrock for future intensified studies.
Resumo:
The electricity market and climate are both undergoing a change. The changes impact hydropower and provoke an interest for hydropower capacity increases. In this thesis a new methodology was developed utilising short-term hydropower optimisation and planning software for better capacity increase profitability analysis accuracy. In the methodology income increases are calculated in month long periods while varying average discharge and electricity price volatility. The monthly incomes are used for constructing year scenarios, and from different types of year scenarios a long-term profitability analysis can be made. Average price development is included utilising a multiplier. The method was applied on Oulujoki hydropower plants. It was found that the capacity additions that were analysed for Oulujoki were not profitable. However, the methodology was found versatile and useful. The result showed that short periods of peaking prices play major role in the profitability of capacity increases. Adding more discharge capacity to hydropower plants that initially bypassed water more often showed the best improvements both in income and power generation profile flexibility.