22 resultados para Photospheric velocity fields


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Centrifugal compressors are widely used for example in refrigeration processes, the oil and gas industry, superchargers, and waste water treatment. In this work, five different vaneless diffusers and six different vaned diffusers are investigated numerically. The vaneless diffusers vary only by their diffuser width, so that four of the geometries have pinch implemented to them. Pinch means a decrease in the diffuser width. Four of the vaned diffusers have the same vane turning angle and a different number of vanes, and two have different vane turning angles. The flow solver used to solve the flow fields is Finflo, which is a Navier-Stokes solver. All the cases are modeled with the Chien's k – έ- turbulence model, and selected cases are modeled also with the k – ώ-SST turbulence model. All five vaneless diffusers and three vaned diffusers are investigated also experimentally. For each construction, the compressor operating map is measured according to relevant standards. In addition to this, the flow fields before and after the diffuser are measured with static and total pressure, flow angle and total temperature measurements. When comparing the computational results to the measured results, it is evident that the k – ώ-SST turbulence model predicts the flow fields better. The simulation results indicate that it is possible to improve the efficiency with the pinch, and according to the numerical results, the two best geometries are the ones with most pinch at the shroud. These geometries have approximately 4 percentage points higher efficiency than the unpinched vaneless diffusers. The hub pinch does not seem to have any major benefits. In general, the pinches make the flow fields before and after the diffuser more uniform. The pinch also seems to improve the impeller efficiency. This is down to two reasons. The major reason is that the pinch decreases the size of slow flow and possible backflow region located near the shroud after the impeller. Secondly, the pinches decrease the flow velocity in the tip clearance, leading to a smaller tip leakage flow and therefore slightly better impeller efficiency. Also some of the vaned diffusers improve the efficiency, the increment being 1...3 percentage points, when compared to the vaneless unpinched geometry. The measurement results confirm that the pinch is beneficial to the performance of the compressor. The flow fields are more uniform with the pinched cases, and the slow flow regions are smaller. The peak efficiency is approximately 2 percentage points and the design point efficiency approximately 4 percentage points higher with the pinched geometries than with the un- pinched geometry. According to the measurements, the two best geometries are the ones with the most pinch at the shroud, the case with the pinch only at the shroud being slightly better of the two. The vaned diffusers also have better efficiency than the vaneless unpinched geometries. However, the pinched cases have even better efficiencies. The vaned diffusers narrow the operating range considerably, whilst the pinch has no significant effect on the operating range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particle Image Velocimetry, PIV, is an optical measuring technique to obtain velocity information of a flow in interest. With PIV it is possible to achieve two or three dimensional velocity vector fields from a measurement area instead of a single point in a flow. Measured flow can be either in liquid or in gas form. PIV is nowadays widely applied to flow field studies. The need for PIV is to obtain validation data for Computational Fluid Dynamics calculation programs that has been used to model blow down experiments in PPOOLEX test facility in the Lappeenranta University of Technology. In this thesis PIV and its theoretical background are presented. All the subsystems that can be considered to be part of a PIV system are presented as well with detail. Emphasis is also put to the mathematics behind the image evaluation. The work also included selection and successful testing of a PIV system, as well as the planning of the installation to the PPOOLEX facility. Already in the preliminary testing PIV was found to be good addition to the measuring equipment for Nuclear Safety Research Unit of LUT. The installation to PPOOLEX facility was successful even though there were many restrictions considering it. All parts of the PIV system worked and they were found out to be appropriate for the planned use. Results and observations presented in this thesis are a good background to further PIV use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kirjallisuusarvostelu

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation critically reviews the idea of meritocracy from both a theoretical and an empirical perspective. Based on a discussion of classical texts of social philosophy and sociology, it is argued that meritocracy as a concept for social stratification is best compatible with the sociological tradition of status attainment research: both frame social inequality in primarily individualistic terms, centring on the role of ascribed (e.g., gender, social background) and achieved (e.g., educational qualifications) characteristics for determining individuals’ socioeconomic rewards. This theoretical argument introduces the research problem at the core of this dissertation: to what extent can the individualistic conception of social stratification be maintained empirically? Fields of study and their interaction with educational attainment levels play a prominent role in the analysis of this question. Drawing on sociological versions of segmented labour market theory, it is assumed that fields of study may channel individuals into heterogeneous political-economic contexts on the labour market, which potentially modify the socioeconomic benefit individuals derive from their qualification levels. The focus on fields of study may also highlight economic differentials between men and women that derive from the persisting segregation of men’s and women’s occupational and educational specializations rather than direct gender discrimination on the labour market. The quantitative analyses in this dissertation consist of three research articles, which are based primarily on Finnish data, but occasionally extend the view to other European countries. The data sources include register-based macro- and microdata as well as survey data. Article I examines the extent and the patterns of gender segregation within the Finnish educational system between 1981 and 2005. The results show that differences between men’s and women’s field specializations have for the most part remained stable during this period, with particularly high levels of gender segregation observed at lower educational levels. The focus in Article II rests on the effects of gender-segregated fields of study on higher education graduates’ occupational status. It is shown that fields of study matter for accessing professional jobs and avoiding low-skilled positions in Finland: at the early career stage, particularly polytechnic graduates from female-dominated fields are less likely to work in professional positions. Finnish university graduates from male-dominated fields were more likely than their peers with different specializations to work as professionals, yet they also faced a greater risk of being sorted into lowskilled jobs if they failed to make use of this advantage. Article III proceeded to analyse the joint impact of educational qualification levels and fields of study on young adults’ median earnings in Finland between 1985 and 2005. The results show that qualification levels do not confer a consistent benefit in the process of earnings stratification. Advanced qualifications raise median earnings most clearly among individuals specializing in the same field of study. When comparing individuals with different field specializations, on the other hand, higher-level qualifications do not necessarily lead to higher median earnings. Overall, the findings of this dissertation reveal a heterogeneous effect of education for achieving social positions, which challenges individual-centred, meritocratic accounts of social stratification and underlines the problematic lack of structural and institutional dimensions in the dominant account of social status attainment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kartta kuuluu A. E. Nordenskiöldin kokoelmaan

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional methods for studying the magnetic shape memory (MSM) alloys Ni-Mn-Ga include subjecting the entire sample to a uniform magnetic field or completely actuating the sample mechanically. These methods have produced significant results in characterizing the MSM effect, the properties of Ni-Mn-Ga and have pioneered the development of applications from this material. Twin boundaries and their configuration within a Ni-Mn-Ga sample are a key component in the magnetic shape memory effect. Applications that are developed require an understanding of twin boundary characteristics and, more importantly, the ability to predictably control them. Twins have such a critical role that the twinning stress of a Ni-Mn-Ga crystal is the defining characteristic that indicates its quality and significant research has been conducted to minimize this property. This dissertation reports a decrease in the twinning stress, predictably controlling the twin configuration and characterizing the dynamics of twin boundaries. A reduction of the twinning stress is demonstrated by the discovery of Type II twins within Ni-Mn-Ga which have as little as 10% of the twinning stress of traditional Type I twins. Furthermore, new methods of actuating a Ni-Mn-Ga element using localized unidirectional or bidirectional magnetic fields were developed that can predictably control the twin configuration in a localized area of a Ni-Mn-Ga element. This method of controlling the local twin configuration was used in the characterization of twin boundary dynamics. Using a localized magnetic pulse, the velocity and acceleration of a single twin boundary were measured to be 82.5 m/s and 2.9 × 107 m/s2, and the time needed for the twin boundary to nucleate and begin moving was less than 2.8 μs. Using a bidirectional magnetic field from a diametrically magnetized cylindrical magnet, a highly reproducible and controllable local twin configuration was created in a Ni-Mn-Ga element which is the fundamental pumping mechanism in the MSM micropump that has been co-invented and extensively characterized by the author.