20 resultados para Pareto optimality
Resumo:
Tässä diplomityössä tutkitaan, miten verkkokaupan kävijävirran käyttäytymistä analysoimalla voidaan tehdä perusteltuja, tarkoituksenmukaisiin nimikkeisiin ja niiden parametreihin kohdistuvia päätöksiä tilanteessa, jossa laajamittaisemmat historiatiedot toteutuneesta myynnistä puuttuvat. Teoriakatsauksen perusteella muodostettiin ratkaisumalli, joka perustuu potentiaalisten kysyntäajurien muodostamiseen ja testaamiseen. Testisarjan perusteella valittavaa ajuria käytetään estimoimaan nimikkeiden kysyntää, jolloin sitä voidaan käyttää toteutuneen myynnin sijasta esimerkiksi Pareto-analyysissä. Näin huomio on mahdollista keskittää rajattuun määrään merkitykseltään suuria nimikkeitä ja niiden yksityiskohtaisiin parametreihin, joilla on merkitystä asiakkaan ostopäätöstilanteissa. Lisäksi voidaan tunnistaa nimikkeitä, joiden ongelmana on joko huono verkkonäkyvyys tai yhteensopimattomuus asiakastarpeiden kanssa. Ajurien testaamisperiaatteena käytetään kertymäfunktioiden yhdenmukaisuustarkastelua, joka rakentuu kolmesta peräkkäisestä vaiheesta; visuaalisesta tarkastelusta, kahden otoksen 2-suuntaisesta Kolmogorov-Smirnov-yhteensopivuustestistä ja Pearsonin korrelaatiotestistä. Mallia ja sen avulla tuotettua kysynnän ajuria testattiin veneilyalan kuluttaja-asiakkaille suunnatussa verkkokaupassa, jossa sillä tunnistettiin Pareto-jakauman alkupäästä runsaasti nimikkeitä, joiden parametreissa oli myynnin kannalta epäedullisia tekijöitä. Jakauman toisessa päässä tunnistettiin satoja nimikkeitä, joiden ongelmana on ilmeisesti joko huono verkkonäkyvyys tai nimikkeiden yhteensopimattomuus asiakastarpeiden kanssa.
Resumo:
Almost every problem of design, planning and management in the technical and organizational systems has several conflicting goals or interests. Nowadays, multicriteria decision models represent a rapidly developing area of operation research. While solving practical optimization problems, it is necessary to take into account various kinds of uncertainty due to lack of data, inadequacy of mathematical models to real-time processes, calculation errors, etc. In practice, this uncertainty usually leads to undesirable outcomes where the solutions are very sensitive to any changes in the input parameters. An example is the investment managing. Stability analysis of multicriteria discrete optimization problems investigates how the found solutions behave in response to changes in the initial data (input parameters). This thesis is devoted to the stability analysis in the problem of selecting investment project portfolios, which are optimized by considering different types of risk and efficiency of the investment projects. The stability analysis is carried out in two approaches: qualitative and quantitative. The qualitative approach describes the behavior of solutions in conditions with small perturbations in the initial data. The stability of solutions is defined in terms of existence a neighborhood in the initial data space. Any perturbed problem from this neighborhood has stability with respect to the set of efficient solutions of the initial problem. The other approach in the stability analysis studies quantitative measures such as stability radius. This approach gives information about the limits of perturbations in the input parameters, which do not lead to changes in the set of efficient solutions. In present thesis several results were obtained including attainable bounds for the stability radii of Pareto optimal and lexicographically optimal portfolios of the investment problem with Savage's, Wald's criteria and criteria of extreme optimism. In addition, special classes of the problem when the stability radii are expressed by the formulae were indicated. Investigations were completed using different combinations of Chebyshev's, Manhattan and Hölder's metrics, which allowed monitoring input parameters perturbations differently.
Resumo:
Optimization of quantum measurement processes has a pivotal role in carrying out better, more accurate or less disrupting, measurements and experiments on a quantum system. Especially, convex optimization, i.e., identifying the extreme points of the convex sets and subsets of quantum measuring devices plays an important part in quantum optimization since the typical figures of merit for measuring processes are affine functionals. In this thesis, we discuss results determining the extreme quantum devices and their relevance, e.g., in quantum-compatibility-related questions. Especially, we see that a compatible device pair where one device is extreme can be joined into a single apparatus essentially in a unique way. Moreover, we show that the question whether a pair of quantum observables can be measured jointly can often be formulated in a weaker form when some of the observables involved are extreme. Another major line of research treated in this thesis deals with convex analysis of special restricted quantum device sets, covariance structures or, in particular, generalized imprimitivity systems. Some results on the structure ofcovariant observables and instruments are listed as well as results identifying the extreme points of covariance structures in quantum theory. As a special case study, not published anywhere before, we study the structure of Euclidean-covariant localization observables for spin-0-particles. We also discuss the general form of Weyl-covariant phase-space instruments. Finally, certain optimality measures originating from convex geometry are introduced for quantum devices, namely, boundariness measuring how ‘close’ to the algebraic boundary of the device set a quantum apparatus is and the robustness of incompatibility quantifying the level of incompatibility for a quantum device pair by measuring the highest amount of noise the pair tolerates without becoming compatible. Boundariness is further associated to minimum-error discrimination of quantum devices, and robustness of incompatibility is shown to behave monotonically under certain compatibility-non-decreasing operations. Moreover, the value of robustness of incompatibility is given for a few special device pairs.
Resumo:
Project scope is to utilize Six Sigma DMAIC approach and lean principles to improve production quality of the case company. Six Sigma tools and techniques are explored through a literature review and later used in the quality control phase. The focus is set on the Pareto analysis to demonstrate the most evident development areas in the production. Materials that are not delivered to the customer or materials that damaged during transportation comprise the biggest share of all feedbacks. The goal is set to reduce these feedbacks by 50 %. Production observation pointed out that not only material shortages but also over-production is a daily situation. As a result, an initial picking list where the purchased and own production components can be seen, is created, reduction of over- and underproduction and material marking improvement are seen the most competitive options so that the goal can be reached. The picking list development should still continue to make sure that the list can be used not only in the case study but also in the industrial scale. The reduction of material missing category can be evaluated reliably not sooner than in few years because it takes time to gather the needed statistical information.