18 resultados para Non-Linear Analysis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Asymmetric synthesis using modified heterogeneous catalysts has gained lots of interest in the production of optically pure chemicals, such as pharmaceuticals, nutraceuticals, fragrances and agrochemicals. Heterogeneous modified catalysts capable of inducing high enantioselectivities are preferred in industrial scale due to their superior separation and handling properties. The topic has been intensively investigated both in industry and academia. The enantioselective hydrogenation of ethyl benzoylformate (EBF) to (R)-ethyl mandelate over (-)-cinchonidine (CD)-modified Pt/Al2O3 catalyst in a laboratory-scale semi-batch reactor was studied as a function of modifier concentration, reaction temperature, stirring rate and catalyst particle size. The main product was always (R)-ethyl mandelate while small amounts of (S)-ethyl mandelate were obtained as by product. The kinetic results showed higher enantioselectivity and lower initial rates approaching asymptotically to a constant value as the amount of modifier was increased. Additionally, catalyst deactivation due to presence of impurities in the feed was prominent in some cases; therefore activated carbon was used as a cleaning agent of the raw material to remove impurities prior to catalyst addition. Detailed characterizations methods (SEM, EDX, TPR, BET, chemisorption, particle size distribution) of the catalysts were carried out. Solvent effects were also studied in the semi-batch reactor. Solvents with dielectric constant (e) between 2 and 25 were applied. The enantiomeric excess (ee) increased with an increase of the dielectric coefficient up to a maximum followed by a nonlinear decrease. A kinetic model was proposed for the enantioselectivity dependence on the dielectric constant based on the Kirkwood treatment. The non-linear dependence of ee on (e) successfully described the variation of ee in different solvents. Systematic kinetic experiments were carried out in the semi-batch reactor. Toluene was used as a solvent. Based on these results, a kinetic model based on the assumption of different number of sites was developed. Density functional theory calculations were applied to study the energetics of the EBF adsorption on pure Pt(1 1 1). The hydrogenation rate constants were determined along with the adsorption parameters by non-linear regression analysis. A comparison between the model and the experimental data revealed a very good correspondence. Transient experiments in a fixed-bed reactor were also carried out in this work. The results demonstrated that continuous enantioselective hydrogenation of EBF in hexane/2-propanol 90/10 (v/v) is possible and that continuous feeding of (-)-cinchonidine is needed to maintain a high steady-state enantioselectivity. The catalyst showed a good stability and high enantioselectivity was achieved in the fixed-bed reactor. Chromatographic separation of (R)- and (S)-ethyl mandelate originating from the continuous reactor was investigated. A commercial column filled with a chiral resin was chosen as a perspective preparative-scale adsorbent. Since the adsorption equilibrium isotherms were linear within the entire investigated range of concentrations, they were determined by pulse experiments for the isomers present in a post-reaction mixture. Breakthrough curves were measured and described successfully by the dispersive plug flow model with a linear driving force approximation. The focus of this research project was the development of a new integrated production concept of optically active chemicals by combining heterogeneous catalysis and chromatographic separation technology. The proposed work is fundamental research in advanced process technology aiming to improve efficiency and enable clean and environmentally benign production of enantiomeric pure chemicals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tutkielman tavoitteena on selvittää osinkosuhteen, osinkotuoton ja omavaraisuusasteen vaikutus osakkeesta saatavaan kokonaistuottoon Suomenosakemarkkinoilla vuosina 2002–2013. Muuttujien kausaliteettisuhde kokonaistuottoon selvitetään regressioanalyysilla. Portfolioanalyysin avulla tutkitaan valittujen tunnuslukujen toimivuutta sijoitusstrategiana. Tutkimuksessa muodostetaan myös osinkosuhteen ja osinkotuoton yhdistelmänä tunnusluku, jolla pyritään maksimoimaan sijoittajan saama tuotto. Empiiriset tulokset osoittivat, että sijoittaja pystyy saavuttamaan ylituottoja hyödyntämällä edellä mainittuja tunnuslukuja osakevalinnassa. Osinkotuoton ja osakkeen kokonaistuoton välillä havaittiin positiivinen lineaarinen korrelaatio. Portfolioanalyysin perusteella sekä omavaraisuusasteen että osinkosuhteen osalta vaikutus sijoittajan saamaan riskisuhteutettuun kokonaistuottoon on ei-lineaarinen. Valittuja tunnuslukuja ja menetelmiä hyödyntäen sijoittaja saa parhaimman riskisuhteutetun tuoton valitsemalla sijoitussalkkuunsa osakkeita, joiden osinkosuhteen arvo sijoittuu toiseksi ylimpään kvartiiliin sekä osakkeita, joiden osinkotuotto on korkea ja omavaraisuusaste on samanaikaisesti alhainen.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Solar Intensity X-ray and particle Spectrometer (SIXS) on board BepiColombo's Mercury Planetary Orbiter (MPO) will study solar energetic particles moving towards Mercury and solar X-rays on the dayside of Mercury. The SIXS instrument consists of two detector sub-systems; X-ray detector SIXS-X and particle detector SIXS-P. The SIXS-P subdetector will detect solar energetic electrons and protons in a broad energy range using a particle telescope approach with five outer Si detectors around a central CsI(Tl) scintillator. The measurements made by the SIXS instrument are necessary for other instruments on board the spacecraft. SIXS data will be used to study the Solar X-ray corona, solar flares, solar energetic particles, the Hermean magnetosphere, and solar eruptions. The SIXS-P detector was calibrated by comparing experimental measurement data from the instrument with Geant4 simulation data. Calibration curves were produced for the different side detectors and the core scintillator for electrons and protons, respectively. The side detector energy response was found to be linear for both electrons and protons. The core scintillator energy response to protons was found to be non-linear. The core scintillator calibration for electrons was omitted due to insufficient experimental data. The electron and proton acceptance of the SIXS-P detector was determined with Geant4 simulations. Electron and proton energy channels are clean in the main energy range of the instrument. At higher energies, protons and electrons produce non-ideal response in the energy channels. Due to the limited bandwidth of the spacecraft's telemetry, the particle measurements made by SIXS-P have to be pre-processed in the data processing unit of the SIXS instrument. A lookup table was created for the pre-processing of data with Geant4 simulations, and the ability of the lookup table to provide spectral information from a simulated electron event was analysed. The lookup table produces clean electron and proton channels and is able to separate protons and electrons. Based on a simulated solar energetic electron event, the incident electron spectrum cannot be determined from channel particle counts with a standard analysis method.