51 resultados para Mining Truck Dynamics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Puna-apilan pysyvyys apila-heinänurmessa sekä seosnurmen satoisuus ja laadun muutokset erilaisissa kasvuoloissa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pro-gradu tutkielman tavoitteena on tutkia, miten yritykset tasapainoilevat tiedon jakamisen ja suojaamisen välillä innovaatioyhteistyöprojekteissa, ja miten sopimukset, immateriaalioikeudet ja luottamus voivat vaikuttaa tähän tasapainoon. Yhteistyössä yritysten täytyy jakaa tarpeellista tietoa kumppanilleen, mutta toisaalta niiden täytyy varoa, etteivät ne menetä ydinosaamiseensa kuuluvaa tietoa ja kilpailuetuaan. Yrityksillä on useita keinoja tietovuodon estämiseen. Tutkielmassa keskitytään patenttien, sopimusten ja liikesalaisuuksien käyttöön tietoa suojaavina mekanismeina. Kyseiset suojamekanismit vaikuttavat luottamukseen kumppaneiden välillä, ja täten myös näiden halukkuuteen jakaa tietoa kumppaneilleen. Jos kumppanit eivät jaa tarpeeksi tietoa toisilleen, voi yhteistyö epäonnistua. Sopimusten, immateriaalioikeuksien ja luottamuksen rooleja ja vuorovaikutusta tutkitaan kahdenvälisissä yhteistyöprojekteissa. Tutkielmassa esitellään neljä case-esimerkkiä, jotka on koottu suomalaisen metsätoimialan yrityksen haastatteluista.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building and sustaining competitive advantage through the creation of market imperfections is challenging in a constantly changing business environment - particularly since the sources of such advantages are increasingly knowledge-based. Facilitated by improved networks and communication, knowledge spills over to competitors more easily than before,thus creating an appropriability problem: the inability of an innovating firm to utilize its innovations commercially. Consequently, as the importance of intellectual assets increases, their protection also calls for new approaches. Companies have various means of protection at their disposal, and by taking advantage of them they can make intangibles more non-transferable and prevent, or at leastdelay, imitation of their most crucial intellectual assets. However, creating barriers against imitation has another side to it, and the transfer of knowledge in situations requiring knowledge sharing may be unintentionally obstructed. Theaim of this thesis is to increase understanding of how firms can balance knowledge protection and sharing so as to benefit most from their knowledge assets. Thus, knowledge protection is approached through an examination of the appropriability regime of a firm, i.e., the combination of available and effective means ofprotecting innovations, their profitability, and the increased rents due to R&D. A further aim is to provide a broader understanding of the formation and structure of the appropriability regime. The study consists of two parts. The first part introduces the research topic and the overall results of the study, and the second part consists of six complementary research publications covering various appropriability issues. The thesis contributes to the existing literature in several ways. Although there is a wide range of prior research on appropriability issues, a lot of it is restricted either to the study of individual appropriability mechanisms, or to comparing certain features of them. These approaches are combined, and the relevant theoretical concepts are clarified and developed. In addition, the thesis provides empirical evidence of the formation of the appropriability regime, which is consequently presented as an adaptive process. Thus, a framework is provided that better corresponds to the complex reality of the current business environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämän työn tavoitteena oli tutkia rakeisen materiaalin kinematiikkaa ja rakentaa koelaitteisto rakeisen materiaalin leikkausjännitysvirtauksien tutkimiseen. Kokeellisessa osassa on keskitytty sisäisiin voimaheilahteluihin ja niiden ymmärtämiseen. Teoriaosassa on käyty läpi rakeisen materiaalin yleisiä ominaisuuksia ja lisäksi on esitetty kaksi eri tapaa mallintaa fysikaalisien ominaisuuksien heilahteluja rakeisessa materiaalissa. Nämä kaksi esitettyä mallinnusmenetelmää ovat skalaarinen q-malli ja simulointi. Skalaarinen q-malli määrittelee jokaiseen yksittäiseen rakeeseen kohdistuvan jännityksen, rakeen ollessa osa 2- tai 3-dimensionaalista asetelmaa. Tämän mallin perusidea on kuvata jännityksien epähomogeenisuutta, joka johtuu rakeiden satunnaisasettelusta. Simulointimallinnus perustuu event-driven algoritmiin, missä systeemin dynamiikkaa kuvataan yksittäisillä partikkelien törmäyksillä. Törmäyksien vaiheet ratkaistiin käyttämällä liikemääräyhtälöitä ja restituution määritelmää. Teoriaosuudessa käytiin vielä pieniltä osin läpi syitä jännitysheilahteluihin ja rakeisen materiaalin lukkiintumiseen. Tutkimuslaitteistolla tutkittiin rakeisen materiaalin käyttäytymistä rengasmaisessa leikkausjännitysvirtauksessa. Tutkimusosuuden päätavoitteena oli mitata partikkelien kosketuksista ja törmäyksistä johtuvia hetkellisiä voimaheilahteluja rengastilavuuden pohjalta. Rakeisena materiaalina tutkimuksessa käytettiin teräskuulia. Jännityssignaali ajan funktiona osoittaa suurta heilahtelua, joka voi olla jopa kertalukua keskiarvosta suurempaa. Tällainen suuren amplitudin omaava heilahtelu on merkittävä haittapuoli yleisesti rakeisissa materiaaleissa käytettyjen jatkuvuusmallien kanssa. Tällainen heilahtelu tekee käytetyt jatkuvuusmallit epäpäteviksi. Yleisellä tasolla jännityksien todennäköisyysjakauma on yhtäpitävä skalaarisen q-mallin tuloksien kanssa. Molemmissa tapauksissa todennäköisyysjakaumalla on eksponentiaalinen muoto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Latinalaisen Amerikan osuus maailmantaloudesta on pieni verrattuna sen maantieteelliseen kokoon, väkilukuun ja luonnonvaroihin. Aluetta pidetään kuitenkin yhtenä tulevaisuuden merkittävistä kasvumarkkinoista. Useissa Latinalaisen Amerikan maissa on teollisuutta, joka hyödyntää luonnonvaroja ja tuottaa raaka-aineita sekä kotimaan että ulkomaiden markkinoille. Tällaisia tyypillisiä teollisuudenaloja Latinalaisessa Amerikassa ovat kaivos- ja metsäteollisuus sekä öljyn ja maakaasun tuotanto. Näiden teollisuudenalojen tuotantolaitteiden ja koneiden valmistusta ei Latinalaisessa Amerikassa juurikaan ole. Ne tuodaan yleensä Pohjois-Amerikasta ja Euroopasta. Tässä diplomityössä tutkitaan sähkömoottorien ja taajuusmuuttajien markkinapotentiaalia Latinalaisessa Amerikassa. Tutkimuksessa perehdytään Latinalaisen Amerikan maiden kansantalouksien tilaan sekä arvioidaan sähkömoottorien ja taajuusmuuttajien markkinoiden kokoa tullitilastojen avulla. Chilen kaivosteollisuudessa arvioidaan olevan erityistä potentiaalia. Diplomityössä selvitetään ostoprosessin kulkua Chilen kaivosteollisuudessa ja eri asiakastyyppien roolia siinä sekä tärkeimpiä päätöskriteerejä toimittaja- ja teknologiavalinnoissa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Työn tavoitteena oli löytää tarkka menetelmä kampiakselin vaurioitumisriskin laskentaan vertailemalla eri laskentamenetelmiä. Lopuksi suoritettiin simulointi monikappalejärjestelmälle käyttäen elastisia malleja todellisista rakenteista. Simulointiohjelmana käytettiin AVL:n kehittämää Excite:ia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in machine learning methods enable increasingly the automatic construction of various types of computer assisted methods that have been difficult or laborious to program by human experts. The tasks for which this kind of tools are needed arise in many areas, here especially in the fields of bioinformatics and natural language processing. The machine learning methods may not work satisfactorily if they are not appropriately tailored to the task in question. However, their learning performance can often be improved by taking advantage of deeper insight of the application domain or the learning problem at hand. This thesis considers developing kernel-based learning algorithms incorporating this kind of prior knowledge of the task in question in an advantageous way. Moreover, computationally efficient algorithms for training the learning machines for specific tasks are presented. In the context of kernel-based learning methods, the incorporation of prior knowledge is often done by designing appropriate kernel functions. Another well-known way is to develop cost functions that fit to the task under consideration. For disambiguation tasks in natural language, we develop kernel functions that take account of the positional information and the mutual similarities of words. It is shown that the use of this information significantly improves the disambiguation performance of the learning machine. Further, we design a new cost function that is better suitable for the task of information retrieval and for more general ranking problems than the cost functions designed for regression and classification. We also consider other applications of the kernel-based learning algorithms such as text categorization, and pattern recognition in differential display. We develop computationally efficient algorithms for training the considered learning machines with the proposed kernel functions. We also design a fast cross-validation algorithm for regularized least-squares type of learning algorithm. Further, an efficient version of the regularized least-squares algorithm that can be used together with the new cost function for preference learning and ranking tasks is proposed. In summary, we demonstrate that the incorporation of prior knowledge is possible and beneficial, and novel advanced kernels and cost functions can be used in algorithms efficiently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomedical research is currently facing a new type of challenge: an excess of information, both in terms of raw data from experiments and in the number of scientific publications describing their results. Mirroring the focus on data mining techniques to address the issues of structured data, there has recently been great interest in the development and application of text mining techniques to make more effective use of the knowledge contained in biomedical scientific publications, accessible only in the form of natural human language. This thesis describes research done in the broader scope of projects aiming to develop methods, tools and techniques for text mining tasks in general and for the biomedical domain in particular. The work described here involves more specifically the goal of extracting information from statements concerning relations of biomedical entities, such as protein-protein interactions. The approach taken is one using full parsing—syntactic analysis of the entire structure of sentences—and machine learning, aiming to develop reliable methods that can further be generalized to apply also to other domains. The five papers at the core of this thesis describe research on a number of distinct but related topics in text mining. In the first of these studies, we assessed the applicability of two popular general English parsers to biomedical text mining and, finding their performance limited, identified several specific challenges to accurate parsing of domain text. In a follow-up study focusing on parsing issues related to specialized domain terminology, we evaluated three lexical adaptation methods. We found that the accurate resolution of unknown words can considerably improve parsing performance and introduced a domain-adapted parser that reduced the error rate of theoriginal by 10% while also roughly halving parsing time. To establish the relative merits of parsers that differ in the applied formalisms and the representation given to their syntactic analyses, we have also developed evaluation methodology, considering different approaches to establishing comparable dependency-based evaluation results. We introduced a methodology for creating highly accurate conversions between different parse representations, demonstrating the feasibility of unification of idiverse syntactic schemes under a shared, application-oriented representation. In addition to allowing formalism-neutral evaluation, we argue that such unification can also increase the value of parsers for domain text mining. As a further step in this direction, we analysed the characteristics of publicly available biomedical corpora annotated for protein-protein interactions and created tools for converting them into a shared form, thus contributing also to the unification of text mining resources. The introduced unified corpora allowed us to perform a task-oriented comparative evaluation of biomedical text mining corpora. This evaluation established clear limits on the comparability of results for text mining methods evaluated on different resources, prompting further efforts toward standardization. To support this and other research, we have also designed and annotated BioInfer, the first domain corpus of its size combining annotation of syntax and biomedical entities with a detailed annotation of their relationships. The corpus represents a major design and development effort of the research group, with manual annotation that identifies over 6000 entities, 2500 relationships and 28,000 syntactic dependencies in 1100 sentences. In addition to combining these key annotations for a single set of sentences, BioInfer was also the first domain resource to introduce a representation of entity relations that is supported by ontologies and able to capture complex, structured relationships. Part I of this thesis presents a summary of this research in the broader context of a text mining system, and Part II contains reprints of the five included publications.