35 resultados para Metallic Structures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is part of the Arctic Materials Technologies Development –project, which aims to research and develop manufacturing techniques, especially welding, for Arctic areas. The main target of this paper is to clarify what kind of European metallic materials are used, or can be used, in Arctic. These materials include mainly carbon steels but also stainless steels and aluminium and its alloys. Standardized materials, their properties and also some recent developments are being introduced. Based on this thesis it can be said that carbon steels (shipbuilding and pipeline steels) have been developed based on needs of industry and steels exist, which can be used in Arctic areas. Still, these steels cannot be fully benefited, because rules and standards are under development. Also understanding of fracture behavior of new ultra high strength steels is not yet good enough, which means that research methods (destructive and non-destructive methods) need to be developed too. The most of new nickel-free austenitic and austenitic-ferritic stainless steels can be used in cold environment. Ferritic and martensitic stainless steels are being developed for better weldability and these steels are mainly developed in nuclear industry. Aluminium alloys are well suitable for subzero environment and these days high strength aluminium alloys are available also as thick sheets. Nanotechnology makes it possible to manufacture steels, stainless steels and aluminium alloys with even higher strength. Joining techniques needs to be developed and examined properly to achieve economical and safe way to join these modern alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid depletion of easy-to-access fossil fuel, predominantly, oil and gas resources has now necessitated increase in need to develop new oil and gas sources in ever more remote and hostile environments. This is necessary in order to explore more oil and gas resources to meet rapidly rising long-term energy demand in the world, both at present and in the nearest future. Arctic is one of these harsh environments, where enormous oil and gas resources are available, containing about 20% of the world total oil and gas, but the environmental conditions are very harsh and hostile. However, virtually all the facilities required for the exploration and development of this new energy source are constructed with metals as well as their alloys and are predominantly joined together by welding processes and technologies. Meanwhile, due to entirely different environment from the usual moderate temperate region, conventional welding technologies, common metals and their alloys cannot be applied as this Arctic environment demand metals structures with very high toughness and strength properties under extremely low temperature. This is due to the fact that metals transit from ductility to brittleness as the temperature moves toward extreme negative values. Hence, this research work investigates and presents the advanced welding technologies applicable to Arctic metal structures which can give satisfactory weldments under active Arctic service conditions. .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With an increasingly growing demand for natural resources, the Arctic region has become an attractive area, holding about 15% of world oil. Ice shrinkage caused by global warming encourages the development of offshore and ship-building sectors. Russia, as one of the leading oil and gas production countries is participating actively in cold resistant materials research, since half of its territory belongs to the Arctic environment, which held considerable stores of oil. Nowadays most Russian offshore platforms are located in the Sakhalin Island area, which geographically does not belong to the Arctic, but has com-parable environmental conditions. Russia recently has manufactured several offshore platforms. It became clear that further development of the Arctic off-shore structures with necessary reliability is highly depending on the materials employed. This work pursues the following objectives:  to provide a comprehensive review on Russian metals used for Arctic offshore structures on the base of standards, books, journal articles and companies reports  to overview various Arctic offshore structures and its structural characteristics  briefly discuss materials testing methods for low temperatures Master`s thesis focuses on specifications and description of Russian metals which are already in use and can be used for Arctic offshore structures. Work overviews several groups of steel, such as low carbon, low alloy, chromium containing steels, stainless steels, aluminium and nanostructured steels. Materials under discussion are grouped based on the standards, for instance the work covers shipbuilding and structural steels at the different sections. This paper provides an overview of important Russian Arctic offshore projects built for use in Russia and ordered by foreign countries. Future trends in development of the Arctic materials are discussed. Based on the information provided in this Master`s thesis it is possible to learn about Russian metals used for ships and offshore platforms operated in the Arctic region. Paper can be used as the comprehensive review of current materials, such as various steels, aluminium and nanomaterials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High strength steel (HSS) has been in use in workshops since the 1980s. At that time, the significance of the term HSS differed from the modern conception as the maximum yield strength of HSSs has increased nearly every year. There are three different ways to make HSS. The first and oldest method is QT (quenched and tempered) followed by the TMCP (thermomechanical controlled process) and DQ (direct quenching) methods. This thesis consists of two parts, the first of which part introduces the research topic and discusses welded HSS structures by characterizing the most important variables. In the second part of the thesis, the usability of welded HSS structures is examined through a set of laboratory tests. The results of this study explain the differences in the usability of the welded HSSs made by the three different methods. The results additionally indicate that usage of different HSSs in the welded structures presumes that manufacturers know what kind of HSS they are welding. As manufacturers use greater strength HSSs in welded structures, the demands for welding rise as well. Therefore, during the manufacturing process, factors such as heat input, cooling time, weld quality, and more must be under careful observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined relationships of organizational dependencies, change management and developed intellectual knowledge resources, in different intellectual capital based development programs on ICT-sector. Study was carried out in a research context, where high degree of external organizational contingencies existed and lots of changes in several development programs had taken place in the last years. From a scientific perspective the main contribution was that evidence between relationships of organizational dependencies, change model portfolio and developed knowledge resources could be suggested. From managerial perspective the primary implication was that in situations where sustainable competitive advantage is pursued by means of increasing knowledge based productivity of labor, firms should seek to pursue organizational settings where external dependencies have minimal amount of effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Communication, the flow of ideas and information between individuals in a social context, is the heart of educational experience. Constructivism and constructivist theories form the foundation for the collaborative learning processes of creating and sharing meaning in online educational contexts. The Learning and Collaboration in Technology-enhanced Contexts (LeCoTec) course comprised of 66 participants drawn from four European universities (Oulu, Turku, Ghent and Ramon Llull). These participants were split into 15 groups with the express aim of learning about computer-supported collaborative learning (CSCL). The Community of Inquiry model (social, cognitive and teaching presences) provided the content and tools for learning and researching the collaborative interactions in this environment. The sampled comments from the collaborative phase were collected and analyzed at chain-level and group-level, with the aim of identifying the various message types that sustained high learning outcomes. Furthermore, the Social Network Analysis helped to view the density of whole group interactions, as well as the popular and active members within the highly collaborating groups. It was observed that long chains occur in groups having high quality outcomes. These chains were also characterized by Social, Interactivity, Administrative and Content comment-types. In addition, high outcomes were realized from the high interactive cases and high-density groups. In low interactive groups, commenting patterned around the one or two central group members. In conclusion, future online environments should support high-order learning and develop greater metacognition and self-regulation. Moreover, such an environment, with a wide variety of problem solving tools, would enhance interactivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimization of high strength and toughness combination on the effect of weldability is very vital to be considered in offshore oil and gas industries. Having a balanced and improved high strength and toughness is very much recommended in offshore structures for an effective production and viable exploration of hydrocarbons. This thesis aims to investigate the possibilities to improve the toughness of high strength steel. High carbon contents induce hardness and needs to be reduced for increasing toughness. The rare combination of high strength with high toughness possibilities was examined by determining the following toughening mechanism of: Heat treatment and optimal microstructure, Thermomechanical processing, Effect of welding parameters on toughness and weldability of steel. The implementation of weldability of steels to attain high toughness for high strength in offshore structures is mostly in shipbuilding, offshore platforms, and pipelines for high operating pressures. As a result, the toughening mechanisms suggested have benefits to the aims of the effect of high strength to high toughness of steel for efficiency, production and cost reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diplomityössä tarkastellaan standardin EN 1090 vaikutuksia Bilfinger Industrial Services Finland Oy:n toimintaympäristössä ja kuinka niitä voidaan hallita hitsauksen laatujärjestelmän avulla. Työssä on myös käsitelty yrityksen pääasiallisen tuotannon eli metallisten teollisuusputkistojen valmistusta sekä laadunhallintaa yleisellä tasolla ja erityisesti hitsauksessa. Rakennustuoteasetuksen mukaisen yhdenmukaistetun standardin EN 1090-1:n siirtymäaika päättyy 1.7.2014 ja se asettaa uudenlaisia vaatimuksia teräsrakentamiseen. Rakennustuotteiden CE-merkintä ja sertifioidun laadunhallinnan järjestäminen vaikuttaa hyvin laajasti suomalaiseen metalliteollisuuteen. Työssä selvitettiin yrityksen nykyiset menettelyt ja kuinka niitä tulisi kehittää uusien vaatimusten mukaiseksi. Tietoa hankittiin keskustelemalla yrityksen henkilöstön kanssa ja tutustumalla sen toimintaperiaatteisiin. Selvitystyötä helpotti jo valmiiksi suhteellisen korkea hitsaustoiminnan laatutaso, joka johtuu vaativien asiakkaiden velvoittamasta laatutyöstä. Työn tuloksena yrityksellä on selkeä kuva miten toimintaa tulee kehittää EN 1090 vaatimusten täyttämiseksi. ISO 3834-2:n soveltaminen paineenalaisten putkistojen valmistuksessa tulee ulottaa myös teräsrakenteiden valmistukseen. Myös vaatimusten mukaisen dokumentaation luomista ja hallintaa tulee kehittää, jotta siitä ei tule liian raskasta henkilöstölle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis is devoted to a theoretical study of resonant tunneling phenomena in semiconductor heterostructures and nanostructures. It considers several problems relevant to modern solid state physics. Namely these are tunneling between 2D electron layers with spin-orbit interaction, tunnel injection into molecular solid material, resonant tunnel coupling of a bound state with continuum and resonant indirect exchange interaction mediated by a remote conducting channel. A manifestation of spin-orbit interaction in the tunneling between two 2D electron layers is considered. General expression is obtained for the tunneling current with account of Rashba and Dresselhaus types of spin-orbit interaction and elastic scattering. It is demonstrated that the tunneling conductance is very sensitive to relation between Rashba and Dresselhaus contributions and opens possibility to determine the spin-orbit interaction parameters and electron quantum lifetime in direct tunneling experiments with no external magnetic field applied. A microscopic mechanism of hole injection from metallic electrode into organic molecular solid (OMS) in high electric field is proposed for the case when the molecules ionization energy exceeds work function of the metal. It is shown that the main contribution to the injection current comes from direct isoenergetic transitions from localized states in OMS to empty states in the metal. Strong dependence of the injection current on applied voltage originates from variation of the number of empty states available in the metal rather than from distortion of the interface barrier. A theory of tunnel coupling between an impurity bound state and the 2D delocalized states in the quantum well (QW) is developed. The problem is formulated in terms of Anderson-Fano model as configuration interaction between the carrier bound state at the impurity and the continuum of delocalized states in the QW. An effect of this interaction on the interband optical transitions in the QW is analyzed. The results are discussed regarding the series of experiments on the GaAs structures with a -Mn layer. A new mechanism of ferromagnetism in diluted magnetic semiconductor heterosructures is considered, namely the resonant enhancement of indirect exchange interaction between paramagnetic centers via a spatially separated conducting channel. The underlying physical model is similar to the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction; however, an important difference relevant to the low-dimensional structures is a resonant hybridization of a bound state at the paramagnetic ion with the continuum of delocalized states in the conducting channel. An approach is developed, which unlike RKKY is not based on the perturbation theory and demonstrates that the resonant hybridization leads to a strong enhancement of the indirect exchange. This finding is discussed in the context of the known experimental data supporting the phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suurelle yleisölle lisäävä valmistustekniikka eli ns. 3D-tulostustekniikka näyttäytyy lehtien otsikoissa ja artikkeleissa esiin pulpahtavana ”muotiaiheena”, mutta sekä muovien 3D-tulostustekniikka että metallienkin vastaava valmistustekniikka on ollut olemassa maailmalla ja Suomessa 80-luvun puolivälistä alkaen. Yhdysvalloissa ja Saksassa tekniikkaa käytetään valmistavassa teollisuudessa toiminnallisten osien tuotannossa. Esimerkiksi lentokoneen suihkumoottorien osia ja lääketieteellisiä välineitä tehdään metallijauheesta lisäävän valmistuksen avulla. Itse asiassa eräs menetelmä metalliesineiden valmistamiseksi lasersäteen avulla keksittiin Suomessa ja sitä myös kehiteltiin täällä, mutta teollisuudenala lähti aikanaan nousuun Saksassa. Lisäävä valmistus on tällä hetkellä maailmanlaajuisesti eräs kiinnostavista tuotantotekniikoista, jonka uskotaan muuttavan monia asioita tuotteiden suunnittelussa, toiminnoissa ja valmistuksessa. Tämä tekniikka ei kiinnosta pelkästään valmistavaa teollisuutta, vaan tietotekniikan, lääketieteen, koruvalmistuksen ja muotoilun osaajat sekä uusien liiketoimintamallien kehittäjät ja logistiikka operaattorit ovat teknologiasta kiinnostuneita. Suomelle 3D-tulostustekniikka on suuri mahdollisuus, sillä maassamme on vahva teollinen tieto- ja viestintätekniikkaosaaminen sekä lisäksi olemme maassamme erikoistuneet varsin vaativien teollisiin laitteiden valmistukseen. Eräät suurimmista mahdollisuuksista tällä tekniikalla ovat toimitusketjuihin liittyvät muutokset. Uutta on, että pienetkin yritykset ja organisaatiot voivat soveltaa tätä tekniikkaa valmistuksessa ja jopa kehitellä täysin uusia tuotteita. On myös arvioitu, että lisäävän valmistuksen merkitys valmistustapoihin ja toimitusketjuihin voi olla suurempi kuin koskaan aikaisemmin minkään teknologisen uudistuksen kohdalla. Lisäävästä valmistuksesta usein puhutaankin kolmantena teollisena vallankumouksena juuri tämän takia. 3D-tulostuksen kustannuksia tarkasteltaessa on tärkeätä huomata että vain sulatetun jauheen määrä ratkaisee, ei käytettävän geometrian monimutkaisuus. Tämä erottaa perinteisen ja lisäävän valmistuksen toisistaan. Perinteisesti kappaleen keventäminen on maksanut ”ylimääräistä”, kun taas lisäävässä valmistuksessa kappaleen keveys on jopa kustannusta alentava tekijä. Valmistettavan kappaleen korkeus on yksi kriittisimpiä kustannuksiin vaikuttavia tekijöitä. Tämän vuoksi useamman kappaleen valmistus yhdellä kertaa parantaa kannattavuutta huomattavasti. Samalla kertaa voi ja itse asiassa kannattaakin valmistaa keskenään erilaisia kappaleita. Perinteiset valmistustavat sen sijaan ovat nykyajan vaatimuksille liian hitaita; ne joustavat huonosti, kun kyseessä on pienet, asiakaslähtöiset erät. Trendi on globaalisti kohden yksilöllisiä asiakaslähtöisiä tuotteita, jolloin myös valmistustekniikoiden on oltava joustavia pysyäkseen näiden vaatimusten perässä. Lisäävä valmistus sopii erityisesti hyvin piensarjatuotantoon. Suuremmissa valmistuserissä kuitenkin perinteiset tekniikat ovat kustannustehokkaampia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The absolute nodal coordinate formulation was originally developed for the analysis of structures undergoing large rotations and deformations. This dissertation proposes several enhancements to the absolute nodal coordinate formulation based finite beam and plate elements. The main scientific contribution of this thesis relies on the development of elements based on the absolute nodal coordinate formulation that do not suffer from commonly known numerical locking phenomena. These elements can be used in the future in a number of practical applications, for example, analysis of biomechanical soft tissues. This study presents several higher-order Euler–Bernoulli beam elements, a simple method to alleviate Poisson’s and transverse shear locking in gradient deficient plate elements, and a nearly locking free gradient deficient plate element. The absolute nodal coordinate formulation based gradient deficient plate elements developed in this dissertation describe most of the common numerical locking phenomena encountered in the formulation of a continuum mechanics based description of elastic energy. Thus, with these fairly straightforwardly formulated elements that are comprised only of the position and transverse direction gradient degrees of freedom, the pathologies and remedies for the numerical locking phenomena are presented in a clear and understandable manner. The analysis of the Euler–Bernoulli beam elements developed in this study show that the choice of higher gradient degrees of freedom as nodal degrees of freedom leads to a smoother strain field. This improves the rate of convergence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allergy is characterized by T helper (Th) 2-type immune response after encounter with an allergen leading to subsequent immunoglobulin (Ig) E-mediated hypersensitivity reaction and further allergic inflammation. Allergen-specific immunotherapy (SIT) balances the Th2-biased immunity towards Th1 and T regulatory responses. Adjuvants are used in allergen preparations to intensify and modify SIT. β-(1,2)-oligomannoside constituents present in Candida albicans (C. albicans) cell wall possess Th1-type immunostimulatory properties. The aim of this thesis was to develop a β-(1,2)-linked carbohydrate compound with known structure and anti-allergic properties to be applied as an adjuvant in SIT. First the immunostimulatory properties of various fungal extracts were studied. C. albicans appeared to be the most promising Th1-inducing extract, which led to the synthesis of various mono- or divalent oligomannosides designed on the basis of C. albicans. These carbohydrates did not induce strong cytokine production in human peripheral blood mononuclear cell (PBMC) cultures. In contrast to earlier reports using native oligosaccharides from C. albicans, synthetic -(1,2)-linked mannotetraose did not induce any tumor necrosis factor production in murine macrophages. Next, similarities with synthesized divalent mannosides and the antigenic epitopes of β-(1,2)-linked C. albicans mannan were investigated. Two divalent compounds inhibited specific IgG antibodies binding to below 3 kDa hydrolyzed mannan down to the level of 30–50% showing similar antigenicity to C. albicans. Immunomodulatory properties of synthesized carbohydrate assemblies ranging from mono- to pentavalent were evaluated. A trivalent acetylated dimannose (TADM) induced interleukin-10 (IL-10) and interferon-γ responses. TADM also suppressed birch pollen induced IL-4 and IL-5 responses in allergen (Bet v) stimulated PBMCs of birch pollen allergic subjects. This suppression was stronger with TADM than with other used adjuvants, immunostimulatory oligonucleotides and monophosphoryl lipid A. In a murine model of asthma, the allergen induced inflammatory responses could also be suppressed by TADM on cytokine and antibody levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-metallic implants made of bioresorbable or biostable synthetic polymers are attractive options in many surgical procedures, ranging from bioresorbable suture anchors of arthroscopic surgery to reconstructive skull implants made of biostable fiber-reinforced composites. Among other benefits, non-metallic implants produce less interference in imaging. Bioresorbable polymer implants may be true multifunctional, serving as osteoconductive scaffolds and as matrices for simultaneous delivery of bone enhancement agents. As a major advantage for loading conditions, mechanical properties of biostable fiber-reinforced composites can be matched with those of the bone. Unsolved problems of these biomaterials are related to the risk of staphylococcal biofilm infections and to the low osteoconductivity of contemporary bioresorbable composite implants. This thesis was focused on the research and development of a multifunctional implant model with enhanced osteoconductivity and low susceptibility to infection. In addition, the experimental models for assessment, diagnostics and prophylaxis of biomaterial-related infections were established. The first experiment (Study I) established an in vitro method for simultaneous evaluation of calcium phosphate and biofilm formation on bisphenol-Aglycidyldimethacrylate and triethylenglycoldimethacrylate (BisGMA-TEGDMA) thermosets with different content of bioactive glass 45S5. The second experiment (Study II) showed no significant difference in osteointegration of nanostructured and microsized polylactide-co-glycolide/β-tricalcium phosphate (PLGA /β-TCP) composites in a minipig model. The third experiment (Study III) demonstrated that positron emission tomography (PET) imaging with the novel 68Ga labelled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) CD33 related sialic-acid immunoglobulin like lectins (Siglec-9) tracer was able to detect inflammatory response to S. epidermidis and S. aureus peri-implant infections in an intraosseous polytetrafluoroethylene catheter model. In the fourth experiment (Study IV), BisGMATEGDMA thermosets coated with lactose-modified chitosan (Chitlac) and silver nanoparticles exhibited antibacterial activity against S. aureus and P. aeruginosa strains in an in vitro biofilm model and showed in vivo biocompatibility in a minipig model. In the last experiment (Study V), a selective androgen modulator (SARM) released from a poly(lactide)-co-ε-caprolactone (PLCL) polymer matrix failed to produce a dose-dependent enhancement of peri-implant osteogenesis in a bone marrow ablation model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is devoted to the study of the hyperfine properties in iron-based superconductors and the synthesis of these compounds and related phases. During this work polycrystalline chalcogenide samples with stoichiometry 1:1 (FeTe1-χSχ, FeSe1-x) and pnictide samples with stoichiometry 1:2:2 (BaFe2(As1-χPχ)2, EuFe2(As1-x Px)2) were synthesized by solid-state reaction methods in vacuum and in a protecting Ar atmosphere. In several cases post-annealing in oxygen atmosphere was employed. The purity and superconducting properties of the obtained samples were checked with X-ray diffraction, SQUID and resistivity measurements. For studies of the magnetic properties of the investigated samples Mössbauer spectroscopy was used. Using low-temperature measurements around Tc and various values of the source velocity the hyperfine interactions were obtained and the magnetic and structural properties in the normal and superconducting states could be studied. Mössbauer measurements together with XRD characterization were also used for the detection of impurity phases. DFT calculations were used for the theoretical study of Mössbauer parameters for pnictide-based ᴻsamples BaFe2(As1-xPx)2 and EuFe2(As1-xPx)2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bedrock of old crystalline cratons is characteristically saturated with brittle structures formed during successive superimposed episodes of deformation and under varying stress regimes. As a result, the crust effectively deforms through the reactivation of pre-existing structures rather than by through the activation, or generation, of new ones, and is said to be in a state of 'structural maturity'. By combining data from Olkiluoto Island, southwestern Finland, which has been investigated as the potential site of a deep geological repository for high-level nuclear waste, with observations from southern Sweden, it can be concluded that the southern part of the Svecofennian shield had already attained structural maturity during the Mesoproterozoic era. This indicates that the phase of activation of the crust, i.e. the time interval during which new fractures were generated, was brief in comparison to the subsequent reactivation phase. Structural maturity of the bedrock was also attained relatively rapidly in Namaqualand, western South Africa, after the formation of first brittle structures during Neoproterozoic time. Subsequent brittle deformation in Namaqualand was controlled by the reactivation of pre-existing strike-slip faults.In such settings, seismic events are likely to occur through reactivation of pre-existing zones that are favourably oriented with respect to prevailing stresses. In Namaqualand, this is shown for present day seismicity by slip tendency analysis, and at Olkiluoto, for a Neoproterozoic earthquake reactivating a Mesoproterozoic fault. By combining detailed field observations with the results of paleostress inversions and relative and absolute time constraints, seven distinctm superimposed paleostress regimes have been recognized in the Olkiluoto region. From oldest to youngest these are: (1) NW-SE to NNW-SSE transpression, which prevailed soon after 1.75 Ga, when the crust had sufficiently cooled down to allow brittle deformation to occur. During this phase conjugate NNW-SSE and NE-SW striking strike-slip faults were active simultaneous with reactivation of SE-dipping low-angle shear zones and foliation planes. This was followed by (2) N-S to NE-SW transpression, which caused partial reactivation of structures formed in the first event; (3) NW-SE extension during the Gothian orogeny and at the time of rapakivi magmatism and intrusion of diabase dikes; (4) NE-SW transtension that occurred between 1.60 and 1.30 Ga and which also formed the NW-SE-trending Satakunta graben located some 20 km north of Olkiluoto. Greisen-type veins also formed during this phase. (5) NE-SW compression that postdates both the formation of the 1.56 Ga rapakivi granites and 1.27 Ga olivine diabases of the region; (6) E-W transpression during the early stages of the Mesoproterozoic Sveconorwegian orogeny and which also predated (7) almost coaxial E-W extension attributed to the collapse of the Sveconorwegian orogeny. The kinematic analysis of fracture systems in crystalline bedrock also provides a robust framework for evaluating fluid-rock interaction in the brittle regime; this is essential in assessment of bedrock integrity for numerous geo-engineering applications, including groundwater management, transient or permanent CO2 storage and site investigations for permanent waste disposal. Investigations at Olkiluoto revealed that fluid flow along fractures is coupled with low normal tractions due to in-situ stresses and thus deviates from the generally accepted critically stressed fracture concept, where fluid flow is concentrated on fractures on the verge of failure. The difference is linked to the shallow conditions of Olkiluoto - due to the low differential stresses inherent at shallow depths, fracture activation and fluid flow is controlled by dilation due to low normal tractions. At deeper settings, however, fluid flow is controlled by fracture criticality caused by large differential stress, which drives shear deformation instead of dilation.