57 resultados para Metal-activation monitors
Resumo:
In the present work electroluminescence in Si-SiO2 structures has been investigated. Electroluminescence has been recorded in the range of 250-900 nm in a system of electrolyte-insulator-semiconductor at the room temperature. The heating process of electrons in SiO2 was studied and possibility of separation it into two phases has been shown. The nature of luminescence centers and the model of its formation were proposed. This paper also includes consideration of oxide layer formation. Charge transfer mechanisms have been attended as well. The nature of electroluminescence is understood in detail. As a matter of fact, electron traps in silicon are the centers of luminescence. Electroluminescence occurs when electrons move from one trap to another. Thus the radiation of light quantum occurs. These traps appear as a result of the oxide growth. At the same time the bonds deformation of silicon atoms with SiOH groups is not excludes. As a result, dangling bonds are appeared, which are the trapping centers or the centers of luminescence.
Resumo:
It is a well known phenomenon that the constant amplitude fatigue limit of a large component is lower than the fatigue limit of a small specimen made of the same material. In notched components the opposite occurs: the fatigue limit defined as the maximum stress at the notch is higher than that achieved with smooth specimens. These two effects have been taken into account in most design handbooks with the help of experimental formulas or design curves. The basic idea of this study is that the size effect can mainly be explained by the statistical size effect. A component subjected to an alternating load can be assumed to form a sample of initiated cracks at the end of the crack initiation phase. The size of the sample depends on the size of the specimen in question. The main objective of this study is to develop a statistical model for the estimation of this kind of size effect. It was shown that the size of a sample of initiated cracks shall be based on the stressed surface area of the specimen. In case of varying stress distribution, an effective stress area must be calculated. It is based on the decreasing probability of equally sized initiated cracks at lower stress level. If the distribution function of the parent population of cracks is known, the distribution of the maximum crack size in a sample can be defined. This makes it possible to calculate an estimate of the largest expected crack in any sample size. The estimate of the fatigue limit can now be calculated with the help of the linear elastic fracture mechanics. In notched components another source of size effect has to be taken into account. If we think about two specimens which have similar shape, but the size is different, it can be seen that the stress gradient in the smaller specimen is steeper. If there is an initiated crack in both of them, the stress intensity factor at the crack in the larger specimen is higher. The second goal of this thesis is to create a calculation method for this factor which is called the geometric size effect. The proposed method for the calculation of the geometric size effect is also based on the use of the linear elastic fracture mechanics. It is possible to calculate an accurate value of the stress intensity factor in a non linear stress field using weight functions. The calculated stress intensity factor values at the initiated crack can be compared to the corresponding stress intensity factor due to constant stress. The notch size effect is calculated as the ratio of these stress intensity factors. The presented methods were tested against experimental results taken from three German doctoral works. Two candidates for the parent population of initiated cracks were found: the Weibull distribution and the log normal distribution. Both of them can be used successfully for the prediction of the statistical size effect for smooth specimens. In case of notched components the geometric size effect due to the stress gradient shall be combined with the statistical size effect. The proposed method gives good results as long as the notch in question is blunt enough. For very sharp notches, stress concentration factor about 5 or higher, the method does not give sufficient results. It was shown that the plastic portion of the strain becomes quite high at the root of this kind of notches. The use of the linear elastic fracture mechanics becomes therefore questionable.
Resumo:
In this research work, the results of an investigation dealing with welding of sheet metals with diverse air gap using FastROOT modified short arc welding method and short circuit MAG welding processes have been presented. Welding runs were made under different conditions and, during each run, the different process parameters were continuously monitored. It was found that maximum welding speed and less HAZ are reached under specific welding conditions with FastROOT method with the emphasis on arc stability. Welding results show that modified short arc exhibits a higher electrode melting coefficient and with virtually spatter free droplet transition. By adjusting the short circuit duration the penetration can be controlled with only a small change in electrode deposition. Furthermore, by mixing pulsed MIG welding with modified arc welding the working envelope of the process is greatly extended allowing thicker material sections to be welded with improved weld bead aesthetics. FastROOT is a modified short arc welding process using mechanized or automated welding process based on dip transfer welding, characterized by controlled material deposition during the short circuit of the wire electrode to the workpiece.
Resumo:
The amount of water available is usually restricted, which leads to a situation where a complete understanding of the process, including water circulations and the influence of water components, is essential. The main aim of this thesis was to clarify the possibilities for the efficient use of residual peroxide by means of water circulation rearrangements. Rearranging water circulations and the reduction of water usage may cause new problems, such as metal induced peroxide decomposition that needs to be addressed. This thesis introduces theoretical methods of water circulations to combine two variables; effective utilization of residual peroxide and avoiding manganese in the alkaline peroxide bleaching stage. Results are mainly based on laboratory and mill site experiments concerning the utilization of residual peroxide. A simulation model (BALAS) was used to evaluate the manganese contents and residual peroxide doses. It was shown that with optimum recirculation of residual peroxide the brightness can be improved or chemical costs can be decreased. From the scientific perspective, it was also very important to discover that recycled peroxide was more effective pre-bleaching agent compared to fresh peroxide. This can be due to the organic acids i.e. per acetic acid in wash press filtrate that have been formed in alkaline bleaching stage. Even short retention time was adequate and the activation of residual peroxide using sodium hydroxide was not necessary. There are several possibilities for using residual peroxide in practice regarding bleaching. A typical modern mechanical pulping process line consist of defibering, screening, a disc filter, a bleach press, high consistency (HC) peroxide bleaching and a wash press. Furthermore there usually is not a particular medium consistency (MC) pre-bleaching stage that includes additional thickening equipment. The most advisable way to utilize residual peroxide in this kind of process is to recycle the wash press filtrate to the dilution of disc filter pulp (low MC pre-bleaching stage). An arrangement such as this would be beneficial in terms of the reduced convection of manganese to the alkaline bleaching stage. Manganese originates from wood material and will be removed to the water phase already in the early stages of the process. Recycling residual peroxide prior to the disc filter is not recommended because of low consistencies. Regarding water circulations, the novel point of view is that, it would be beneficial to divide water circulations into two sections and the critical location for the division is the disc filter. Both of these two sections have their own priority. Section one before the disc filter: manganese removal. Section two after the disc filter: brightening of pulp. This division can be carried out if the disc filter pulp is diluted only by wash press filtrate before the MC storage tower. The situation is even better if there is an additional press after the disc filter, which will improve the consistency of the pulp. This has a significant effect on the peroxide concentration in the MC pre-bleaching stage. In terms of manganese content, it is essential to avoid the use of disc filter filtrate in the bleach press and wash press showers. An additional cut-off press would also be beneficial for manganese removal. As a combination of higher initial brightness and lower manganese content, the typical brightness increase varies between approximately 0.5 and 1% ISO units after the alkaline peroxide bleaching stage. This improvement does not seem to be remarkable, but as it is generally known, the final brightness unit is the most expensive and difficult to achieve. The estimation of cost savings is not unambiguous. For example in GW/TMP mill case 0.6% ISO units higher final brightness gave 10% savings in the costs of bleaching chemicals. With an hypothetical 200 000 ton annual production, this means that the mill could save in the costs of bleaching chemicals more than 400 000 euros per year. In general, it can be said that there were no differences between the behavior of different types of processes (GW, PGW, TMP and BCTMP). The enhancement of recycling gave a similar response in all cases. However, we have to remember that the utilization of residual peroxide in older mills depends a great deal on the process equipment, the amount of water available and existing pipeline connections. In summary, it can be said that processes are individual and the same solutions cannot be applied to all cases.
Resumo:
Populärkulturen har i dagens läge kommit att utgöra en allt mer viktig och central inspirationskälla för allt fler människors konstruktion av den egna religiösa identiteten även inom traditionella och institutionella kristna sammanhang. Denna avhandling belyser denna utveckling i ljuset av den finländska kristna metallmusik-kulturen - en sällsynt stark sammanblanding av protestantisk kristendom och en utpräglad och kontroversiell populärmusikform och dess kultur. Fokus riktas framför allt på hur den kristna metallmusik-kulturen blir meningsfull för sina medlemmar genom de sätt på vilka den konstrueras diskursivt, dvs. genom de sätt på vilka den representeras och talas om bland sina egna anhängare. Den diskursiva konstruktionen av den kristna metallmusik-kulturen utforskas på ett såväl bredare transnationellt som ett finländskt nationellt plan. Studien redogör även för den kristna metalmusikens och -kulturens huvudsakliga verbala, visuella och estetiska kännetecken. Uppbyggnaden och spridningen av dagens transnationella kristna metallmusik-kultur undersöks även i ljuset av det teoretiska konceptet scene. Avhandlingens centrala argument är att den kristna metallmusikscenen erbjuder sina medlemmar en mängd resurser för skapandet av ett alternativt och komplementärt religiöst uttrycksätt, religiös praxis och en alternativ kristen identitet.
Resumo:
Kirja-arvio
Resumo:
CBS domains are ~60 amino acid tandemly repeated regulatory modules forming a widely distributed domain superfamily. Found in thousands of proteins from all kingdoms of life, CBS domains have adopted a variety of functions during evolution, one of which is regulation of enzyme activity through binding of adenylate-containing compounds in a hydrophobic cavity. Mutations in human CBS domain-containing proteins cause hereditary diseases. Inorganic pyrophosphatases (PPases) are ubiquitous enzymes, which pull pyrophosphate (PPi) producing reactions forward by hydrolyzing PPi into phosphate. Of the two nonhomologous soluble PPases, dimeric family II PPases, belonging to the DHH family of phosphoesterases, require a transition metal and magnesium for maximal activity. A quarter of the almost 500 family II PPases, found in bacteria and archaea, contain a 120-250 amino acid N-terminal insertion, comprised of two CBS domains separated in sequence by a DRTGG domain. These enzymes are thus named CBS-PPases. The function of the DRTGG domain in proteins is unknown. The aim of this PhD thesis was to elucidate the structural and functional differences of CBS-PPases in comparison to family II PPases lacking the regulatory insert. To this end, we expressed, purified and characterized the CBS-PPases from Clostridium perfringens (cpCBS-PPase) and Moorella thermoacetica (mtCBS-PPase), the latter lacking a DRTGG domain. Both enzymes are homodimers in solution and display maximal activity against PPi in the presence of Co2+ and Mg2+. Uniquely, the DRTGG domain was found to enable tripolyphosphate hydrolysis at rates similar to that of PPi. Additionally, we found that AMP and ADP inhibit, while ATP and AP4A activate CBSPPases, thus enabling regulation in response to changes in cellular energy status. We then observed substrate- and nucleotide-induced conformational transitions in mtCBS-PPase and found that the enzyme exists in two differentially active conformations, interconverted through substrate binding and resulting in a 2.5-fold enzyme activation. AMP binding was shown to produce an alternate conformation, which is reached through a different pathway than the substrate-induced conformation. We solved the structure of the regulatory insert from cpCBS-PPase in complex with AMP and AP4A and proposed that conformational changes in the loops connecting the catalytic and regulatory domains enable activity regulation. We examined the effects of mutations in the CBS domains of mtCBS-PPase on catalytic activity, as well as, nucleotide binding and inhibition.
Resumo:
In this study we discuss the atomic level phenomena on transition metal surfaces. Transition metals are widely used as catalysts in industry. Therefore, reactions occuring on transition metal surfaces have large industrial intrest. This study addresses problems in very small size and time scales, which is an important part in the overall understanding of these phenomena. The publications of this study can be roughly divided into two categories: The adsorption of an O2 molecule to a surface, and surface structures of preadsorbed atoms. These two categories complement each other, because in the realistic case there are always some preadsorbed atoms at the catalytically active surfaces. However, all transition metals have an active d-band, and this study is also a study of the in uence of the active d-band on other atoms. At the rst part of this study we discuss the adsorption and dissociation of an O2 molecule on a clean stepped palladium surface and a smooth palladium surface precovered with sulphur and oxygen atoms. We show how the reactivity of the surface against the oxygen molecule varies due to the geometry of the surface and preadsorbed atoms. We also show how the molecular orbitals of the oxygen molecule evolve when it approaches the di erent sites on the surface. In the second part we discuss the surface structures of transition metal surfaces. We study the structures that are intresting on account of the Rashba e ect and charge density waves. We also study the adsorption of suphur on a gold surface, and surface structures of it. In this study we use ab-initio based density functional theory methods to simulate the results. We also compare the results of our methods to the results obtained with the Low-Energy-Electron-Difraction method.
Resumo:
Företag inom industri och handel väljer allt oftare att låta ett logistikföretag sköta stora delar av sina logistiska processer. Logistikföretagen i sin tur överlåter utförandet av enskilda tjänster, som t.ex. olika typer av transport, till olika samarbetspartners inom branschen. I avhandlingen studeras hur logistikföretag går till väga då de väljer vilka av deras samarbetspartners som ska engageras för att delta i utförandet av ett logistiktjänstepaket, en arbetsprocess som här kallas aktivering. Fokus ligger på aktiveringens innehåll och de faktorer som inverkar på hur den går till och vilka samarbetsparter som kommer att engageras. Arbetet bygger på nätverksansatsen för studier av företagsrelationer på industriella marknader. Aktiveringsprocessen uppfattas som en rätt ordinär, rutinmässig verksamhet i företaget, men den kan också förväntas inverka på hur företagets samarbetsnätverk utvecklas över tiden, genom att vissa relationer förstärks medan andra försvagas. I den empi riska undersökningen deltog 29 logistikföretag i Åboregionen som utgående från ett diskussionsunderlag fick berätta om hur de går till väga vid aktivering.
Resumo:
Den snart 200 år gamla vetenskapsgrenen organisk synteskemi har starkt bidragit till moderna samhällens välfärd. Ett av flaggskeppen för den organiska synteskemin är utvecklingen och produktionen av nya läkemedel och speciellt de aktiva substanserna däri. Därmed är det viktigt att utveckla nya syntesmetoder, som kan tillämpas vid framställningen av farmaceutiskt relevanta målstrukturer. I detta sammanhang är den ultimata målsättningen dock inte endast en lyckad syntes av målmolekylen, utan det är allt viktigare att utveckla syntesrutter som uppfyller kriterierna för den hållbara utvecklingen. Ett av de centralaste verktygen som en organisk kemist har till förfogande i detta sammanhang är katalys, eller mera specifikt möjligheten att tillämpa olika katalytiska reaktioner vid framställning av komplexa målstrukturer. De motsvarande industriella processerna karakteriseras av hög effektivitet och minimerad avfallsproduktion, vilket naturligtvis gynnar den kemiska industrin samtidigt som de negativa miljöeffekterna minskas avsevärt. I denna doktorsavhandling har nya syntesrutter för produktion av finkemikalier med farmaceutisk relevans utvecklats genom att kombinera förhållandevis enkla transformationer till nya reaktionssekvenser. Alla reaktionssekvenser som diskuteras i denna avhandling påbörjades med en metallförmedlad allylering av utvalda aldehyder eller aldiminer. De erhållna produkterna innehållende en kol-koldubbelbindning med en närliggande hydroxyl- eller aminogrupp modifierades sedan vidare genom att tillämpa välkända katalytiska reaktioner. Alla syntetiserade molekyler som presenteras i denna avhandling karakteriseras som finkemikalier med hög potential vid farmaceutiska tillämpningar. Utöver detta tillämpades en mängd olika katalytiska reaktioner framgångsrikt vid syntes av dessa molekyler, vilket i sin tur förstärker betydelsen för de katalytiska verktygen i organiska kemins verktygslåda.
Resumo:
The increasing demand for lightweight components has led to a huge exploitation of non-metallic materials such as polymers, fibers and elastomers in industrial and manufacturing processes. Recent trends towards cost effectiveness, weight reduction and production flexibility in industrial production and manufacturing processes has led to a growing interest in hybrid components where two or more dissimilar materials coexist to achieving specifically optimized characteristics. The importance of this research is to serve as a bridge to understanding the theories behind various joining techniques and the adaptation of the process for metal to polymer hybrid joints. Moreso, it helps companies to select the most productive and yet economical joining process for realization of lightweight metal to polymer hybrid components. This thesis is a literature review analyzing various materials that has been published on various joining methods for metal to polymer hybrid joints on the feasibility and eventual realization of the joint between these dissimilar materials. This study is aimed at theoretically evaluating the feasibility of joining processes between metal and plastic components by exploiting exhaustively joining and welding sources.
Resumo:
Ett huvudmål med denna avhandling var att erhålla ny information om växelverkan mellan metalljoner i vattenfas och träbaserade material såsom olika pappersmassor, ved och bark. Material av gran, tall och björk har studerats. En ny känslig kolonnkromatografisk metod utvecklades för bestämning av affinitetsordningar för 17 olika metalljoner. Av dessa bands trevärt järn och de mycket toxiska tungmetallerna bly, koppar och kadmium starkast till de studerade materialen. Växelverkan i dessa tvåfas system sker som jonbyte, huvudsakligen via komplexbildning av metalljoner till funktionella grupper i den fasta fasen. Vattenfasens pH är den viktigaste parametern som bestämmer totala halten av metalljoner som binds till materialen. Resultatet i denna avhandling kan delvis betraktas som grundforskning. En ny kunskap om metalljoners förekomst och kemiska reaktioner i dessa system är även av stor ekonomisk och ekologisk, betydelse, när man strävar till allt mera slutna system i moderna massafabriker. Avhandlingen visar också att trädbark har stor potential för biosorption av tungmetaller t.ex. från avfallsvatten. Trädbark har nästan lika stor bindningskapacitet som dyra syntetiska jonbytare.
Resumo:
Rapid depletion of easy-to-access fossil fuel, predominantly, oil and gas resources has now necessitated increase in need to develop new oil and gas sources in ever more remote and hostile environments. This is necessary in order to explore more oil and gas resources to meet rapidly rising long-term energy demand in the world, both at present and in the nearest future. Arctic is one of these harsh environments, where enormous oil and gas resources are available, containing about 20% of the world total oil and gas, but the environmental conditions are very harsh and hostile. However, virtually all the facilities required for the exploration and development of this new energy source are constructed with metals as well as their alloys and are predominantly joined together by welding processes and technologies. Meanwhile, due to entirely different environment from the usual moderate temperate region, conventional welding technologies, common metals and their alloys cannot be applied as this Arctic environment demand metals structures with very high toughness and strength properties under extremely low temperature. This is due to the fact that metals transit from ductility to brittleness as the temperature moves toward extreme negative values. Hence, this research work investigates and presents the advanced welding technologies applicable to Arctic metal structures which can give satisfactory weldments under active Arctic service conditions. .
Resumo:
The bioavailability of metals and their potential for environmental pollution depends not simply on total concentrations, but is to a great extent determined by their chemical form. Consequently, knowledge of aqueous metal species is essential in investigating potential metal toxicity and mobility. The overall aim of this thesis is, thus, to determine the species of major and trace elements and the size distribution among the different forms (e.g. ions, molecules and mineral particles) in selected metal-enriched Boreal river and estuarine systems by utilising filtration techniques and geochemical modelling. On the basis of the spatial physicochemical patterns found, the fractionation and complexation processes of elements (mainly related to input of humic matter and pH-change) were examined. Dissolved (<1 kDa), colloidal (1 kDa-0.45 μm) and particulate (>0.45 μm) size fractions of sulfate, organic carbon (OC) and 44 metals/metalloids were investigated in the extremely acidic Vörå River system and its estuary in W Finland, and in four river systems in SW Finland (Sirppujoki, Laajoki, Mynäjoki and Paimionjoki), largely affected by soil erosion and acid sulfate (AS) soils. In addition, geochemical modelling was used to predict the formation of free ions and complexes in these investigated waters. One of the most important findings of this study is that the very large amounts of metals known to be released from AS soils (including Al, Ca, Cd, Co, Cu, Mg, Mn, Na, Ni, Si, U and the lanthanoids) occur and can prevail mainly in toxic forms throughout acidic river systems; as free ions and/or sulfate-complexes. This has serious effects on the biota and especially dissolved Al is expected to have acute effects on fish and other organisms, but also other potentially toxic dissolved elements (e.g. Cd, Cu, Mn and Ni) can have fatal effects on the biota in these environments. In upstream areas that are generally relatively forested (higher pH and contents of OC) fewer bioavailable elements (including Al, Cu, Ni and U) may be found due to complexation with the more abundantly occurring colloidal OC. In the rivers in SW Finland total metal concentrations were relatively high, but most of the elements occurred largely in a colloidal or particulate form and even elements expected to be very soluble (Ca, K, Mg, Na and Sr) occurred to a large extent in colloidal form. According to geochemical modelling, these patterns may only to a limited extent be explained by in-stream metal complexation/adsorption. Instead there were strong indications that the high metal concentrations and dominant solid fractions were largely caused by erosion of metal bearing phyllosilicates. A strong influence of AS soils, known to exist in the catchment, could be clearly distinguished in the Sirppujoki River as it had very high concentrations of a metal sequence typical of AS soils in a dissolved form (Ba, Br, Ca, Cd, Co, K, Mg, Mn, Na, Ni, Rb and Sr). In the Paimionjoki River, metal concentrations (including Ba, Cs, Fe, Hf, Pb, Rb, Si, Th, Ti, Tl and V; not typical of AS soils in the area) were high, but it was found that the main cause of this was erosion of metal bearing phyllosilicates and thus these metals occurred dominantly in less toxic colloidal and particulate fractions. In the two nearby rivers (Laajoki and Mynäjoki) there was influence of AS soils, but it was largely masked by eroded phyllosilicates. Consequently, rivers draining clay plains sensitive to erosion, like those in SW Finland, have generally high background metal concentrations due to erosion. Thus, relying on only semi-dissolved (<0.45 μm) concentrations obtained in routine monitoring, or geochemical modelling based on such data, can lead to a great overestimation of the water toxicity in this environment. The potentially toxic elements that are of concern in AS soil areas will ultimately be precipitated in the recipient estuary or sea, where the acidic metalrich river water will gradually be diluted/neutralised with brackish seawater. Along such a rising pH gradient Al, Cu and U will precipitate first together with organic matter closest to the river mouth. Manganese is relatively persistent in solution and, thus, precipitates further down the estuary as Mn oxides together with elements such as Ba, Cd, Co, Cu and Ni. Iron oxides, on the contrary, are not important scavengers of metals in the estuary, they are predicted to be associated only with As and PO4.