60 resultados para Metal cleaning
Resumo:
Työn tavoittena oli selvittää, miten tietovarastointi voi tukea yrityksessä tapahtuvaa päätöksentekoa. Tietovarastokomponenttien ja –prosessien kuvauksen jälkeen on käsitelty tietovarastoprojektin eri vaiheita. Esitettyä teoriaa sovellettiin käytäntöön globaalissa metalliteollisuusyrityksessä, jossa tietovarastointikonseptia testattiin. Testauksen perusteella arvioitiin olemassa olevan tiedon tilaa sekä kahden käytetyn ohjelmiston toimivuutta tietovarastoinnissa. Yrityksen operatiivisten järjestelmien tiedon laadun todettiin olevan tutkituilta osin epäyhtenäistä ja puutteellista. Siksi tiedon suora yrityslaajuinen hyödyntäminen luotettavien ja hyvälaatuisten raporttien luonnissa on vaikeaa. Lisäksi eri yksiköiden välillä havaittiin epäyhtenäisyyttä käytettyjen liiketoiminnan käsitteiden sekä järjestelmien käyttötapojen suhteen. Testauksessa käytetyt ohjelmistot suoriutuivat perustietovarastoinnista hyvin, vaikkakin joitain rajoituksia ja erikoisuuksia ilmenikin. Työtä voidaan pitää ennen varsinaista tietovarastoprojektia tehtävänä esitutkimuksena. Jatkotoimenpiteinä ehdotetaan testauksen jatkamista nykyisillä työkaluilla kohdistaen tavoitteet konkreettisiin tuloksiin. Tiedon laadun tärkeyttä tulee korostaa koko organisaatiossa ja olemassa olevan tiedon laatua pitää parantaa tulevaisuudessa.
Resumo:
Työn tarkoituksena oli selvittää Alstom Finland Oy:n pääasiakkaiden ympäristö-lupatilanne sekä tarkastella, miten Alstomin toimittamat hiukkastenpuhdistuslait-teet täyttävät muuttavat lainsäädännön vaatimukset. Lisäksi työssä arvioitiin lai-tosten hiukkaspäästöjen vähentämisestä syntyvää savukaasunpuhdistuslaitteiden investointitarvetta. Työn teoriaosuus sisältää katsauksen ympäristölupakäytäntöön sekä Valtioneu-voston asetuksiin, jotka koskevat laitosten hiukkaspäästöjä. Lisäksi työssä on kä-sitelty parhaan käytettävissä olevan tekniikan mukaisia hiukkaspäästörajoja ja tekniikoita sekä hiukkasten muodostumista että raskasmetallien sitoutumista hiukkasiin. Kaikkiaan työssä mukana olevia laitoksia oli 49, joista tarkemmin tarkasteltiin 12 laitosta. Suurin osa laitoksista ei ollut saanut tai hakenut ympäristönsuojelulain mukaista ympäristölupaa, joten niillä on velvollisuus hakea lupaa siirtymäsään-nöksen mukaisesti vuoden 2004 loppuun mennessä. Tarkemmassa tarkastelussa olevien laitosten hiukkaspäästömittaustuloksia vertailtiin nykyisiin sekä uu-siin/oletettuihin ympäristölupien hiukkaspäästörajoihin. Tarkastelussa mukana olevasta seitsemästä soodakattilalaitoksesta, joilla ei vielä ollut uutta ympäristölu-paa, 43 % ylitti arvioidun uuden luparajan 50 mg/m3(n):ssa ja kolmesta meesauu-nia käyttävästä laitoksesta yksi sekä viidestä muusta kattilasta kaksi.
Resumo:
The goal of this thesis is to give information to machine designers about how to design and size sheet metal structures and joints. Generally, the designing object is to lighten structures. To design structures that are light and can carry loads more effectively, designers have to be updated of new manufacturing techniques and new designing methods and criterions. With knowledge of this thesis, a designer can recognize objects and methods plus how and where it is possible to apply these new more effectively load carrying structures. The thesis gives answers to questions of corrosion and material planning, goes into joint types and manufacturing techniques of sheet metal structures. One of the main issues is to develop designers world of ideas to design right kind of products with new lasertechniques.
Resumo:
We present a brief résumé of the history of solidification research and key factors affecting the solidification of fusion welds. There is a general agreement of the basic solidification theory, albeit differing - even confusing - nomenclatures do exist, and Cases 2 and 3 (the Chalmers' basic boundary conditions for solidification, categorized by Savage as Cases) are variably emphasized. Model Frame, a tool helping to model the continuum of fusion weld solidification from start to end, is proposed. It incorporates the general solidification models, of which the pertinent ones are selected for the actual modeling. The basic models are the main solidification Cases 1…4. These discrete Cases are joined with Sub-Cases: models of Pfann, Flemings and others, bringing needed Sub-Case variables into the model. Model Frame depicts a grain growing from the weld interface to its centerline. Besides modeling, the Model Frame supports education and academic debate. The new mathematical modeling techniques will extend its use into multi-dimensional modeling, introducing new variables and increasing the modeling accuracy. We propose a model: melting/solidification-model (M/S-model) - predicting the solute profile at the start of the solidification of a fusion weld. This Case 3-based Sub-Case takes into account the melting stage, the solute back-diffusion in the solid, and the growth rate acceleration typical to fusion welds. We propose - based on works of Rutter & Chalmers, David & Vitek and our experimental results on copper - that NEGS-EGS-transition is not associated only with cellular-dendritic-transition. Solidification is studied experimentally on pure and doped copper with welding speed range from 0 to 200 cm/min, with one test at 3000 cm/min. Found were only planar and cellular structures, no dendrites - columnar or equiaxed. Cell sub structures: rows of cubic elements we call "cubelettes", "cell-bands" and "micro-cells", as well as an anomalous crack morphology "crack-eye", were detected, as well as microscopic hot crack nucleus we call "grain-lag cracks", caused by a grain slightly lagging behind its neighbors in arrival to the weld centerline. Varestraint test and R-test revealed a change of crack morphologies from centerline cracks to grainand cell boundary cracks with an increasing welding speed. High speed made the cracks invisible to bare eye and hardly detectable with light microscope, while electron microscope often revealed networks of fine micro-cracks.
Resumo:
Due to their numerous novel technological applications ranging from the example of exhaust catalysts in the automotive industry to the catalytic production of hydro- gen, surface reactions on transition metal substrates have become to be one of the most essential subjects within the surface science community. Although numerous applications exist, there are many details in the different processes that, after many decades of research, remain unknown. There are perhaps as many applications for the corrosion resistant materials such as stainless steels. A thorough knowledge of the details of the simplest reactions occuring on the surfaces, such as oxidation, play a key role in the design of better catalysts, or corrosion resistant materials in the future. This thesis examines the oxidation of metal surfaces from a computational point of view mostly concentrating on copper as a model material. Oxidation is studied from the initial oxidation to the oxygen precovered surface. Important parameters for the initial sticking and dissociation are obtained. The saturation layer is thoroughly studied and the calculated results arecompared with available experimental results. On the saturated surface, some open questions still remain. The present calculations demonstrate, that the saturated part of the surface is excluded from being chemically reactive towards the oxygen molecules. The results suggest, that the reason for the chemical activity of the saturated surface is due to a strain effect occuring between the saturated areas of the surface.
Resumo:
In this thesis, cleaning of ceramic filter plates clogged by iron oxides was studied. Oxalic acid is considered as the most effective cleaning agent for the plates fouled by iron oxides, but when using oxalic acid, sparingly soluble calcium oxalate may be formed and it can blind the filter media. Suitability of another chemical for cleaning the plates clogged by iron oxides was studied in this thesis. The literature part was mostly about the properties of the chemical, about its reactions, industrial uses, safety issues etc. In the experimental part, the efficiency of the chemical for cleaning of the ceramic plates clogged by iron oxides was studied. Two kinds of plates were used in the experiments; the others were clogged by hematite and the others by magnetite. Both soaking and flow-through experiments were done. A suitable concentration, pH and temperature were tried to find in the experiments. Also the effect of ultrasound was studied. The efficiency of the cleaning was examined by measuring the permeability of the plates during the experiments. ICP-OES analysis was performed for determining the amount of dissolved iron in the washing solution. Some experiments were also done with oxalic acid. The results from the oxalic acid experiments were compared to the results from the experiments with the other chemical. In the experiments with the other chemical, the permeability increased more and the amounts of dissolved iron were larger. According to the results from the experiments, the method of application of the washing solutions had an impact on the washing results.
Resumo:
In the present work electroluminescence in Si-SiO2 structures has been investigated. Electroluminescence has been recorded in the range of 250-900 nm in a system of electrolyte-insulator-semiconductor at the room temperature. The heating process of electrons in SiO2 was studied and possibility of separation it into two phases has been shown. The nature of luminescence centers and the model of its formation were proposed. This paper also includes consideration of oxide layer formation. Charge transfer mechanisms have been attended as well. The nature of electroluminescence is understood in detail. As a matter of fact, electron traps in silicon are the centers of luminescence. Electroluminescence occurs when electrons move from one trap to another. Thus the radiation of light quantum occurs. These traps appear as a result of the oxide growth. At the same time the bonds deformation of silicon atoms with SiOH groups is not excludes. As a result, dangling bonds are appeared, which are the trapping centers or the centers of luminescence.
Resumo:
It is a well known phenomenon that the constant amplitude fatigue limit of a large component is lower than the fatigue limit of a small specimen made of the same material. In notched components the opposite occurs: the fatigue limit defined as the maximum stress at the notch is higher than that achieved with smooth specimens. These two effects have been taken into account in most design handbooks with the help of experimental formulas or design curves. The basic idea of this study is that the size effect can mainly be explained by the statistical size effect. A component subjected to an alternating load can be assumed to form a sample of initiated cracks at the end of the crack initiation phase. The size of the sample depends on the size of the specimen in question. The main objective of this study is to develop a statistical model for the estimation of this kind of size effect. It was shown that the size of a sample of initiated cracks shall be based on the stressed surface area of the specimen. In case of varying stress distribution, an effective stress area must be calculated. It is based on the decreasing probability of equally sized initiated cracks at lower stress level. If the distribution function of the parent population of cracks is known, the distribution of the maximum crack size in a sample can be defined. This makes it possible to calculate an estimate of the largest expected crack in any sample size. The estimate of the fatigue limit can now be calculated with the help of the linear elastic fracture mechanics. In notched components another source of size effect has to be taken into account. If we think about two specimens which have similar shape, but the size is different, it can be seen that the stress gradient in the smaller specimen is steeper. If there is an initiated crack in both of them, the stress intensity factor at the crack in the larger specimen is higher. The second goal of this thesis is to create a calculation method for this factor which is called the geometric size effect. The proposed method for the calculation of the geometric size effect is also based on the use of the linear elastic fracture mechanics. It is possible to calculate an accurate value of the stress intensity factor in a non linear stress field using weight functions. The calculated stress intensity factor values at the initiated crack can be compared to the corresponding stress intensity factor due to constant stress. The notch size effect is calculated as the ratio of these stress intensity factors. The presented methods were tested against experimental results taken from three German doctoral works. Two candidates for the parent population of initiated cracks were found: the Weibull distribution and the log normal distribution. Both of them can be used successfully for the prediction of the statistical size effect for smooth specimens. In case of notched components the geometric size effect due to the stress gradient shall be combined with the statistical size effect. The proposed method gives good results as long as the notch in question is blunt enough. For very sharp notches, stress concentration factor about 5 or higher, the method does not give sufficient results. It was shown that the plastic portion of the strain becomes quite high at the root of this kind of notches. The use of the linear elastic fracture mechanics becomes therefore questionable.
Resumo:
In this research work, the results of an investigation dealing with welding of sheet metals with diverse air gap using FastROOT modified short arc welding method and short circuit MAG welding processes have been presented. Welding runs were made under different conditions and, during each run, the different process parameters were continuously monitored. It was found that maximum welding speed and less HAZ are reached under specific welding conditions with FastROOT method with the emphasis on arc stability. Welding results show that modified short arc exhibits a higher electrode melting coefficient and with virtually spatter free droplet transition. By adjusting the short circuit duration the penetration can be controlled with only a small change in electrode deposition. Furthermore, by mixing pulsed MIG welding with modified arc welding the working envelope of the process is greatly extended allowing thicker material sections to be welded with improved weld bead aesthetics. FastROOT is a modified short arc welding process using mechanized or automated welding process based on dip transfer welding, characterized by controlled material deposition during the short circuit of the wire electrode to the workpiece.
Resumo:
In many industries, such as petroleum production, and the petrochemical, metal, food and cosmetics industries, wastewaters containing an emulsion of oil in water are often produced. The emulsions consist of water (up to 90%), oils (mineral, animal, vegetable and synthetic), surfactants and other contaminates. In view of its toxic nature and its deleterious effects on the surrounding environment (soil, water) such wastewater needs to be treated before release into natural water ways. Membrane-based processes have successfully been applied in industrial applications and are considered as possible candidates for the treatment of oily wastewaters. Easy operation, lower cost, and in some cases, the ability to reduce contaminants below existing pollution limits are the main advantages of these systems. The main drawback of membranes is flux decline due tofouling and concentration polarisation. The complexity of oil-containing systems demands complementary studies on issues related to the mitigation of fouling and concentration polarisation in membranebased ultrafiltration. In this thesis the effect of different operating conditions (factors) on ultrafiltration of oily water is studied. Important factors are normally correlated and, therefore, their effect should be studied simultaneously. This work uses a novel approach to study different operating conditions, like pressure, flow velocity, and temperature, and solution properties, like oil concentration (cutting oil, diesel, kerosene), pH, and salt concentration (CaCl2 and NaCl)) in the ultrafiltration of oily water, simultaneously and in a systematic way using an experimental design approach. A hypothesis is developed to describe the interaction between the oil drops, salt and the membrane surface. The optimum conditions for ultrafiltration and the contribution of each factor in the ultrafiltration of oily water are evaluated. It is found that the effect on permeate flux of the various factors studied strongly depended on the type of oil, the type of membrane and the amount of salts. The thesis demonstrates that a system containing oil is very complex, and that fouling and flux decline can be observed even at very low pressures. This means that only the weak form of the critical flux exists for such systems. The cleaning of the fouled membranes and the influence of different parameters (flow velocity, temperature, time, pressure, and chemical concentration (SDS, NaOH)) were evaluated in this study. It was observed that fouling, and consequently cleaning, behaved differently for the studied membranes. Of the membranes studied, the membrane with the lowest propensity for fouling and the most easily cleaned was the regenerated cellulose membrane (C100H). In order to get more information about the interaction between the membrane and the components of the emulsion, a streaming potential study was performed on the membrane. The experiments were carried out at different pH and oil concentration. It was seen that oily water changed the surface charge of the membrane significantly. The surface charge and the streaming potential during different stages of filtration were measured and analysed being a new method for fouling of oil in this thesis. The surface charge varied in different stages of filtration. It was found that the surface charge of a cleaned membrane was not the same as initially; however, the permeability was equal to that of a virgin membrane. The effect of filtration mode was studied by performing the filtration in both cross-flow and deadend mode. The effect of salt on performance was considered in both studies. It was found that salt decreased the permeate flux even at low concentration. To test the effect of hydrophilicity change, the commercial membranes used in this thesis were modified by grafting (PNIPAAm) on their surfaces. A new technique (corona treatment) was used for this modification. The effect of modification on permeate flux and retention was evaluated. The modified membranes changed their pore size around 33oC resulting in different retention and permeability. The obtained results in this thesis can be applied to optimise the operation of a membrane plant under normal or shock conditions or to modify the process such that it becomes more efficient or effective.
Resumo:
Populärkulturen har i dagens läge kommit att utgöra en allt mer viktig och central inspirationskälla för allt fler människors konstruktion av den egna religiösa identiteten även inom traditionella och institutionella kristna sammanhang. Denna avhandling belyser denna utveckling i ljuset av den finländska kristna metallmusik-kulturen - en sällsynt stark sammanblanding av protestantisk kristendom och en utpräglad och kontroversiell populärmusikform och dess kultur. Fokus riktas framför allt på hur den kristna metallmusik-kulturen blir meningsfull för sina medlemmar genom de sätt på vilka den konstrueras diskursivt, dvs. genom de sätt på vilka den representeras och talas om bland sina egna anhängare. Den diskursiva konstruktionen av den kristna metallmusik-kulturen utforskas på ett såväl bredare transnationellt som ett finländskt nationellt plan. Studien redogör även för den kristna metalmusikens och -kulturens huvudsakliga verbala, visuella och estetiska kännetecken. Uppbyggnaden och spridningen av dagens transnationella kristna metallmusik-kultur undersöks även i ljuset av det teoretiska konceptet scene. Avhandlingens centrala argument är att den kristna metallmusikscenen erbjuder sina medlemmar en mängd resurser för skapandet av ett alternativt och komplementärt religiöst uttrycksätt, religiös praxis och en alternativ kristen identitet.
Resumo:
Kirja-arvio
Resumo:
In this study we discuss the atomic level phenomena on transition metal surfaces. Transition metals are widely used as catalysts in industry. Therefore, reactions occuring on transition metal surfaces have large industrial intrest. This study addresses problems in very small size and time scales, which is an important part in the overall understanding of these phenomena. The publications of this study can be roughly divided into two categories: The adsorption of an O2 molecule to a surface, and surface structures of preadsorbed atoms. These two categories complement each other, because in the realistic case there are always some preadsorbed atoms at the catalytically active surfaces. However, all transition metals have an active d-band, and this study is also a study of the in uence of the active d-band on other atoms. At the rst part of this study we discuss the adsorption and dissociation of an O2 molecule on a clean stepped palladium surface and a smooth palladium surface precovered with sulphur and oxygen atoms. We show how the reactivity of the surface against the oxygen molecule varies due to the geometry of the surface and preadsorbed atoms. We also show how the molecular orbitals of the oxygen molecule evolve when it approaches the di erent sites on the surface. In the second part we discuss the surface structures of transition metal surfaces. We study the structures that are intresting on account of the Rashba e ect and charge density waves. We also study the adsorption of suphur on a gold surface, and surface structures of it. In this study we use ab-initio based density functional theory methods to simulate the results. We also compare the results of our methods to the results obtained with the Low-Energy-Electron-Difraction method.