18 resultados para Lanthanide squarate hydrates
Resumo:
Crystal properties, product quality and particle size are determined by the operating conditions in the crystallization process. Thus, in order to obtain desired end-products, the crystallization process should be effectively controlled based on reliable kinetic information, which can be provided by powerful analytical tools such as Raman spectrometry and thermal analysis. The present research work studied various crystallization processes such as reactive crystallization, precipitation with anti-solvent and evaporation crystallization. The goal of the work was to understand more comprehensively the fundamentals, phenomena and utilizations of crystallization, and establish proper methods to control particle size distribution, especially for three phase gas-liquid-solid crystallization systems. As a part of the solid-liquid equilibrium studies in this work, prediction of KCl solubility in a MgCl2-KCl-H2O system was studied theoretically. Additionally, a solubility prediction model by Pitzer thermodynamic model was investigated based on solubility measurements of potassium dihydrogen phosphate with the presence of non-electronic organic substances in aqueous solutions. The prediction model helps to extend literature data and offers an easy and economical way to choose solvent for anti-solvent precipitation. Using experimental and modern analytical methods, precipitation kinetics and mass transfer in reactive crystallization of magnesium carbonate hydrates with magnesium hydroxide slurry and CO2 gas were systematically investigated. The obtained results gave deeper insight into gas-liquid-solid interactions and the mechanisms of this heterogeneous crystallization process. The research approach developed can provide theoretical guidance and act as a useful reference to promote development of gas-liquid reactive crystallization. Gas-liquid mass transfer of absorption in the presence of solid particles in a stirred tank was investigated in order to gain understanding of how different-sized particles interact with gas bubbles. Based on obtained volumetric mass transfer coefficient values, it was found that the influence of the presence of small particles on gas-liquid mass transfer cannot be ignored since there are interactions between bubbles and particles. Raman spectrometry was successfully applied for liquid and solids analysis in semi-batch anti-solvent precipitation and evaporation crystallization. Real-time information such as supersaturation, formation of precipitates and identification of crystal polymorphs could be obtained by Raman spectrometry. The solubility prediction models, monitoring methods for precipitation and empirical model for absorption developed in this study together with the methodologies used gives valuable information for aspects of industrial crystallization. Furthermore, Raman analysis was seen to be a potential controlling method for various crystallization processes.
Resumo:
Upconversion photoluminescence is a unique property of mostly certain inorganic materials, which are capable of converting low-energy infrared radiation into a higher-energy emission at visible wavelengths. This anti-Stokes shift enables luminescence detection without autofluorescence, which makes the upconverting materials a highly suitable reporter technology for optical biosensing applications. Furthermore, they exhibit long luminescence lifetime with narrow bandwidths also at the optical window of biomaterials enabling luminescence measurements in challenging sample matrices, such as whole blood. The aim of this thesis was to study the unique properties and the applicability of nano-sized upconverting phosphors (UCNPs) as reporters in biosensing applications. To render the inorganic nanophosphors water-dispersible and biocompatible, they were subjected to a series of surface modifications starting with silica-encapsulation and ending with a bioconjugation step with an analyte-recognizing biomolecule. The paramagnetism of the lanthanide dopants in the nanophosphors was exploited to develop a highly selective separation method for the UCNP-bioconjugates based on the magnetic selectivity of the high gradient magnetic separation (HGMS) system. The applicability of the nano-sized UCNPs as reporters in challenging sample matrices was demonstrated in two homogeneous sensing applications based on upconversion resonance energy transfer (UC-RET). A chemosensor for intracellular pH was developed exploiting UC-RET between the UCNP and a fluorogenic pH-sensitive dye with strongly increasing fluorescence intensity in decreasing pH. The pH-independent emission of the UCNPs at 550 nm was used for referencing. The applicability of the pH-nanosensor for intracellular pH measurement was tested in HeLa cells, and the acidic pH of endosomes could be detected with a confocal fluorescence microscope. Furthermore, a competitive UC-RET-based assay for red blood cell folic acid was developed for the measurement of folate directly from a whole blood sample. The optically transparent window of biomaterials was used in both the excitation and the measurement of the UC-RET sensitized emission of a near-infrared acceptor dye to minimize sample absorption, and the anti-Stokes detection completely eliminated the Stokes-shifted autofluorescence. The upconversion photoluminescence efficiency is known to be dependent on crystallite size, because the increasing surface-to-volume ratio of nano-sized UCNPs renders them more susceptible to quenching effects of the environment than their bulk counterpart. Water is known to efficiently quench the luminescence of lanthanide dopants. In this thesis, the quenching mechanism of water was studied using luminescence decay measurements. Water was found to quench the luminescence of UCNPs by increasing the non-radiative relaxation of the excited state of Yb3+ sensitizer ion, which had a very strong quenching effect on upconversion luminescence intensity.
Resumo:
Kvantitatiivinen reaaliaikainen polymeraasiketjureaktio (engl. polymerase chain reaction, PCR) on osoittautunut käyttäjäystävällisimmäksi menetelmäksi nukleiinihapposekvenssien kvantitoimisessa. Tätä menetelmää voidaan herkistää pienempien DNA-pitoisuuksien havaitsemiseen käyttämällä hyväksi aikaerotteista fluorometriaa (engl. time-resolved fluorometry, TRF) ja luminoivia lantanidileimoja, joiden fluoresenssin pitkän eliniän ansiosta emission mittaus voidaan suorittaa vasta hetki virittävän valopulssin jälkeen, jolloin lyhytikäinen taustasäteily ehtii sammua. Tuloksena saadaan korkea signaali-taustasuhde. Tämän diplomityön tarkoituksena oli rakentaa TRF:än pystyvä reaaliaikainen PCR-laite, sillä tällaista laitetta ei ole markkinoilla tarjolla. Laite rakennettiin kehittämällä lämpökierrätin ja yhdistämällä se valmiiseen TRF:än kykenevään mittapäähän. Mittapään ja lämpökierrättimen hallitsemiseksi kehitettiin myös tietokoneohjelma. Valon tuottamiseksi ja mittaamiseksi haluttiin käyttää edullisia komponentteja, joten työssä käytettiin valmiin mittapään optiikkaa, jossa viritys tapahtuu hohtodiodilla (engl. light-emitting diode, LED) ja lantanidileiman emission mittaus fotodiodilla (engl. photodiode, PD) tai valomonistinputkella (engl. photomultiplier tube, PMT). Myös mittapään suorituskykyä tutkittiin. Työtä varten kehitettiin lämpökierrätin, joka koostui Peltier-elementillä lämmitettävästä PCR-putkitelineestä ja lämpökannesta. Mittalaitteen suorituskyvyn tutkimiseen käytettiin kelaattikomplementaatioon perustuvaa PCR-tuotteen havaitsemismenetelmää. Kelaattikomplementaatio perustuu kahteen erilliseen oligonukleotidimolekyyliin, joista toiseen on sidottu lantanidi-ioni ja toiseen valoa absorboiva ligandirakenne, jotka yhdessä muodostavat fluoresoivan kokonaisuuden. Kehitetyn lämpökierrättimen todettiin olevan tarpeeksi tarkka sekä tehokas ja sen lämmitys- ja jäähdytysnopeuden maksimeiksi saatiin 2,6 °C/sekunti. Detektorina käytetyn PD:n ei todettu olevan tarpeeksi herkkä emission havainnoimiseksi ja se korvattiin laitteessa PMT:llä. Käytetyllä PCR-määrityksellä kynnyssykleiksi (engl. threshold cycle, Ct) sekä kehitetylle että referenssilaitteelle saatiin 28,4 käyttämällä samaa 100 000 kopion DNA:n aloitusmäärää. Työssä osoitettiin, että on mahdollista kehittää edullisia komponentteja käyttävä, TRF:än pystyvä, reaaliaikainen PCR-laite, joka kykenee vastaavaan Ct-arvoon kuin vertailulaite. PD:n herkkyys ei kuitenkaan riittänyt. Tulokset olivat lupaavia, sillä LED- ja PD-teknologiat kehittyvät ja markkinoille on tullut myös muita komponentteja, joiden avulla on tulevaisuudessa mahdollista kehittää vielä herkempi laite.