20 resultados para Intermodal Container Terminal, Rail Transportation, Delays, Simulation, Australia
Resumo:
The Gulf of Finland is said to be one of the densest operated sea areas in the world. It is a shallow and economically vulnerable sea area with dense passenger and cargo traffic of which petroleum transports have a share of over 50 %. The winter conditions add to the risks of maritime traffic in the Gulf of Finland. It is widely believed that the growth of maritime transportation will continue also in the future. The Gulf of Finland is surrounded by three very different national economies with, different maritime transportation structures. Finland is a country of high GDP/per capita with a diversified economic structure. The number of ports is large and the maritime transportation consists of many types of cargoes: raw materials, industrial products, consumer goods, coal and petroleum products, and the Russian transit traffic of e.g. new cars and consumer goods. Russia is a large country with huge growth potential; in recent years, the expansion of petroleum exports has lead to a strong economic growth, which is also apparent in the growth of maritime transports. Russia has been expanding its port activities in the Gulf of Finland and it is officially aiming to transport its own imports and exports through the Russian ports in the future; now they are being transported to great extend through the Finnish, Estonian and other Baltic ports. Russia has five ports in the Gulf of Finland. Estonia has also experienced fast economic growth, but the growth has been slowing down already during the past couples of years. The size of its economy is small compared to Russia, which means the transported tonnes cannot be very massive. However, relatively large amounts of the Russian petroleum exports have been transported through the Estonian ports. The future of the Russian transit traffic in Estonia looks nevertheless uncertain and it remains to be seen how it will develop and if Estonia is able to find replacing cargoes if the Russian transit traffic will come to an end in the Estonian ports. Estonia’s own import and export consists of forestry products, metals or other raw materials and consumer goods. Estonia has many ports on the shores of the Gulf of Finland, but the port of Tallinn dominates the cargo volumes. In 2007, 263 M tonnes of cargoes were transported in the maritime traffic in the Gulf of Finland, of which the share of petroleum products was 56 %. 23 % of the cargoes were loaded or unloaded in the Finnish ports, 60 % in the Russian ports and 17 % in the Estonian ports. The largest ports were Primorsk (74.2 M tonnes) St. Petersburg (59.5 M tonnes), Tallinn (35.9 M tonnes), Sköldvik (19.8 M tonnes), Vysotsk (16.5 M tonnes) and Helsinki (13.4 M) tonnes. Approximately 53 600 ship calls were made in the ports of the Gulf of Finland. The densest traffic was found in the ports of St. Petersburg (14 651 ship calls), Helsinki (11 727 ship calls) and Tallinn (10 614 ship calls) in 2007. The transportation scenarios are usually based on the assumption that the amount of transports follows the development of the economy, although also other factors influence the development of transportation, e.g. government policy, environmental aspects, and social and behavioural trends. The relationship between the development of transportation and the economy is usually analyzed in terms of the development of GDP and trade. When the GDP grows to a certain level, especially the international transports increase because countries of high GDP produce, consume and thus transport more. An effective transportation system is also a precondition for the economic development. In this study, the following factors were taken into consideration when formulating the future scenarios: maritime transportation in the Gulf of Finland 2007, economic development, development of key industries, development of infrastructure and environmental aspects in relation to maritime transportation. The basic starting points for the three alternative scenarios were: • the slow growth scenario: economic recession • the average growth scenario: economy will recover quickly from current instability • the strong growth scenario: the most optimistic views on development will realize According to the slow growth scenario, the total tonnes for the maritime transportation in the Gulf of Finland would be 322.4 M tonnes in 2015, which would mean a growth of 23 % compared to 2007. In the average growth scenario, the total tonnes were estimated to be 431.6 M tonnes – a growth of 64 %, and in the strong growth scenario 507.2 M tonnes – a growth of 93%. These tonnes were further divided into petroleum products and other cargoes by country, into export, import and domestic traffic by country, and between the ports. For petroleum products, the share of crude oil and oil products was estimated and the number of tanker calls in 2015 was calculated for each scenario. However, the future development of maritime transportation in the GoF is dependent on so many societal and economic variables that it is not realistic to predict one exact point estimate value for the cargo tonnes for a certain scenario. Plenty of uncertainty is related both to the degree in which the scenario will come true as well as to the cause-effect relations between the different variables. For these reasons, probability distributions for each scenario were formulated by an expert group. As a result, a range for the total tonnes of each scenario was formulated and they are as follows: the slow growth scenario: 280.8 – 363 M tonnes (expectation value 322.4 M tonnes)
Resumo:
The role of transport in the economy is twofold. As a sector of economic activity it contributes to a share of national income. On the other hand, improvements in transport infrastructure create room for accelerated economic growth. As a means to support railways as a safe and environmentally friendly transportation mode, the EU legislation has required the opening of domestic railway freight for competition from beginning of year 2007. The importance of railways as a mode of transport has been great in Finland, as a larger share of freight has been carried on rails than in Europe on average. In this thesis it is claimed that the efficiency of goods transport can be enhanced by service specific investments. Furthermore, it is stressed that simulation can and should be used to evaluate the cost-efficiency of transport systems on operational level, as well as to assess transportation infrastructure investments. In all the studied cases notable efficiency improvements were found. For example in distribution, home delivery of groceries can be almost twice as cost efficient as the current practice of visiting the store. The majority of the cases concentrated on railway freight. In timber transportation, the item with the largest annual transport volume in domestic railway freight in Finland, the transportation cost could be reduced most substantially. Also in international timber procurement, the utilization of railway wagons could be improved by combining complementary flows. The efficiency improvements also have positive environmental effects; a large part of road transit could be moved to rails annually. If impacts of freight transport are included in cost-benefit analysis of railway investments, up to 50 % increase in the net benefits of the evaluated alternatives can be experienced, avoiding a possible inbuilt bias in the assessment framework, and thus increasing the efficiency of national investments in transportation infrastructure. Transportation systems are a typical example of complex real world systems that cannot be analysed realistically by analytical methods, whereas simulation allows inclusion of dynamics and the level of detail required. Regarding simulation as a viable tool for assessing the efficiency of transportation systems finds support also in the international survey conducted for railway freight operators; operators use operations research methods widely for planning purposes, while simulation is applied only by the larger operators.
Resumo:
The worlds’ population is increasing and cities have become more crowded with people and vehicles. Communities in the fringe of metropolitans’ increase the traffic done with private cars, but also increase the need for public transportation. People have typically needs traveling to work located in city centers during the morning time, and return to suburbs in the afternoon or evening. Rail based passenger transport is environmentally friendly transport mode with high capacity to transport large volume of people. Railways have been regulated markets with national incumbent having monopoly position. Opening the market for competition is believed to have a positive effect by increasing the efficiency of the industry. National passenger railway market is opened for competition only in few countries, where as international traffic in EU countries was deregulated in 2010. The objective of this study is to examine the passenger railway market of three North European countries, Sweden, Denmark and Estonia. The interest was also to get an understanding of the current situation and how the deregulation has proceeded. Theory of deregulation is unfolded with literature analyses and empirical part of the study is constructed from two parts. Customer satisfaction survey was chosen as a method to collect real life experiences from the passengers and measure their knowledge of the market situation and possible changes appeared. Interviews of experts from the industry and labor unions give more insights and able better understanding for example of social consequences caused from opening the market for competition. Expert interviews were conducted by using semi-structured theme interview. Based on the results of this study, deregulation has proceeded quite differently in the three countries researched. Sweden is the most advanced country, where the passenger railway market is open for new entrants. Denmark and Estonia are lagging behind. Opening the market is considered positive among passengers and most of the experts interviewed. Common for the interviews were the labour unions negative perspective concerning deregulation. Despite the fact deregulation is considered positive among the respondents of the customer satisfaction survey, they could not name railway undertakings operating in their country. Generally respondents were satisfied with the commuter trains. Ticket price, punctuality of trains and itinerary affect the most to customer satisfaction.
Resumo:
The management of port-related supply chains is challenging due to the complex and heterogeneous operations of the ports with several actors and processes. That is why the importance of information sharing is emphasised in the ports. However, the information exchange between different port-related actors is often cumbersome and it still involves a lot of manual work and paper. Major ports and port-related actors usually have advanced information systems in daily use but these systems are seldom interoperable with each other, which prevents economies of scale to be reached. Smaller ports and companies might not be equipped with electronic data transmission at all. This is the final report of the Mobile port (MOPO) project, which has sought ways to improve the management and control of port-related sea and inland traffic with the aid of ICT technologies. The project has studied port community systems (PCS) used worldwide, evaluated the suitability of a PCS for the Finnish port operating environment and created a pilot solution of a Finnish PCS in the port of HaminaKotka. Further, the dry port concept and its influences on the transportation system have been explored. The Mobile Port project comprised of several literature reviews, interviews of over 50 port-related logistics and/or ICT professionals, two different kinds of simulation models as well as designing and implementing of the pilot solution of the Finnish PCS. The results of these multiple studies are summarised in this report. Furthermore, recommendations for future actions and the topics for further studies are addressed in the report. The study revealed that the information sharing in a typical Finnish port-related supply chain contains several bottlenecks that cause delays in shipments and waste resources. The study showed that many of these bottlenecks could be solved by building a port community system for the Finnish port community. Almost 30 different kinds of potential services or service entities of a Finnish PCS were found out during the study. The basic requirements, structure, interfaces and operation model of the Finnish PCS were also defined in the study. On the basis of the results of the study, a pilot solution of the Finnish PCS was implemented in the port of HaminaKotka. The pilot solution includes a Portconnect portal for the Finnish port community system (available at https://www.portconnect.fi) and two pilot applications, which are a service for handling the information flows concerning the movements of railway wagons and a service for handling the information flows between Finnish ports and Finland-Russian border. The study also showed that port community systems can be used to improve the environmental aspects of logistics in two different ways: 1) PCSs can bring direct environmental benefits and 2) PCSs can be used as an environmental tool in a port community. On the basis of the study, the development of the Finnish port community system should be continued by surveying other potential applications for the Finnish PCS. It is also important to study if there is need and resources to extend the Finnish PCS to operate in several ports or even on a national level. In the long run, it could be reasonable to clarify whether there would be possibilities to connect the Finnish PCS as a part of Baltic Sea wide, European-wide or even worldwide maritime and port-related network in order to get the best benefit from the system
Resumo:
Logistics infrastructure and transportation services have been the liability of countries and governments for decades, or these have been under strict regulation policies. One of the first branches opened for competition in EU as well as in other continents, has been air transports (operators, like passenger and freight) and road transports. These have resulted on lower costs, better connectivity and in most of the cases higher service quality. However, quite large amount of other logistics related activities are still directly (or indirectly) under governmental influence, e.g. railway infrastructure, road infrastructure, railway operations, airports, and sea ports. Due to the globalization, governmental influence is not that necessary in this sector, since transportation needs have increased with much more significant phase as compared to economic growth. Also freight transportation needs do not correlate with passenger side, due to the reason that only small number of areas in the world have specialized in the production of particular goods. Therefore, in number of cases public-private partnership, or even privately owned companies operating in these sub-branches have been identified as beneficial for countries, customers and further economic growth. The objective of this research work is to shed more light on these kinds of experiments, especially in the relatively unknown sub-branches of logistics like railways, airports and sea container transports. In this research work we have selected companies having public listed status in some stock exchange, and have needed amount of financial scale to be considered as serious company rather than start-up phase venture. Our research results show that railways and airports usually need high fixed investments, but have showed in the last five years generally good financial performance, both in terms of profitability and cash flow. In contrary to common belief of prosperity in globally growing container transports, sea vessel operators of containers have not shown that impressive financial performance. Generally margins in this business are thin, and profitability has been sacrificed in front of high growth – this also concerns cash flow performance, which has been lower too. However, as we examine these three logistics sub-branches through shareholder value development angle during time period of 2002-2007, we were surprised to find out that all of these three have outperformed general stock market indexes in this period. More surprising is the result that financially a bit less performing sea container transportation sector shows highest shareholder value gain in the examination period. Thus, it should be remembered that provided analysis shows only limited picture, since e.g. dividends were not taken into consideration in this research work. Therefore, e.g. US railway operators have disadvantage to other in the analysis, since they have been able to provide dividends for shareholders in long period of time. Based on this research work we argue that investment on transportation/logistics sector seems to be safe alternative, which yields with relatively low risk high gain. Although global economy would face smaller growth period, this sector seems to provide opportunities in more demanding situation as well.