33 resultados para Herbert Gold Mine
Resumo:
Avsikten med studien är att producera den första rekonstruktionen av det västafrikanska klimatet mellan 1750 och 1798. Kunskapen om det västafrikanska klimatet före 1800-talet är till dags dato bristfällig, vilket gör det svårare att förstå framtida klimatvariationer. Det är bristen på instrumentell meteorologisk data (temperatur, regnmängd, och lufttryck), vilket i princip bara täcker det senaste århundradet, som är orsaken till att tidigare klimat är bristfälligt kartlagda. Klimatet och miljön är även sådana att proxydata från ’naturens arkiv’ (såsom t.ex. trädringar) har begränsad användning. Således är historiska dokument, främst från gästande kulturer/nationer/intressenter, innehållande deskriptiv information om vädret och klimatet, klimatforskarens viktigaste källa. Genom att använda tidigare, för det här syftet, oanvända källor påvisade den här undersökningen att klimatet i västra Afrika och Guldkusten (Ghana) har ändrats sedan 1700-talet. Monsunregnen var svagare och kortvarigare, speciellt den sekundära regnperioden under hösten var betydligt svagare än idag. Det förekom kraftiga årliga variationer i monsunregnen, men sett ur längre tidsperspektiv utmärktes torrare och blötare perioder. Studien kunde också visa en viss korrelation mellan det globala väderfenomenet El Niño och regnperiodens intensitet längs med kusten. Flera torrperioder sammanföll med tidigare registrerade El Niño sekvenser. Speciellt slutet av 1760-talet påverkades kraftigt av El Niño och även det globala klimatet verkar ha genomgått graftiga förändringar just dessa år. På basis av den nya klimatrekonstruktionen genomfördes också en jämförelse av klimatets inverkan på den transatlantiska slavhandeln från 1750 till 1798, en fråga som historikerna gjort anspelningar på i över 30 år. Utförseln av slavar från västra Afrika var som kraftigast under 1700-talets andra hälft. Analysen visade att slavhandeln delvis tilltog i samband med klimatanomalierna.
Resumo:
Acid mine drainage (AMD) presents a serious problem for the environment for the massive formation of acidic leachates containing heavy metals. The present work deals with the AMD treatment using neutralizing limestone side-products. The conventional methods for prevention, mitigating and control of AMD formation are described. The experimental testing of Nordkalk Oy calcite-containing side-stones for acid neutralizing and removal of nickel from solutions presents the research objective. The batch experiments in acid neutralizing with subsequent metal content analysis were carried out. The results showed the dependence of pH on the dose of neutralizing material and the exposure time. The nickel removal, unlike iron, within the pH range from 1.2 to 6.0 appeared to be inadequate. The further research on nickel co-precipitation with iron and aluminium may appear to be necessary together with testing of alkalinity strengthening materials.
Resumo:
Investigation of high pressure pretreatment process for gold leaching is the objective of the present master's thesis. The gold ores and concentrates which cannot be easily treated by leaching process are called "refractory". These types of ores or concentrates often have high content of sulfur and arsenic that renders the precious metal inaccessible to the leaching agents. Since the refractory ores in gold manufacturing industry take a considerable share, the pressure oxidation method (autoclave method) is considered as one of the possible ways to overcome the related problems. Mathematical modeling is the main approach in this thesis which was used for investigation of high pressure oxidation process. For this task, available information from literature concerning this phenomenon, including chemistry, mass transfer and kinetics, reaction conditions, applied apparatus and application, was collected and studied. The modeling part includes investigation of pyrite oxidation kinetics in order to create a descriptive mathematical model. The following major steps are completed: creation of process model by using the available knowledge; estimation of unknown parameters and determination of goodness of the fit; study of the reliability of the model and its parameters.
Resumo:
Nowadays biomass transformation has a great potential for the synthesis of value-added compounds with a wide range of applications. Terpenoids, extracted from biomass, are inexpensive and renewable raw materials which often have a biological activity and are widely used as important organic platform molecules in the development of new medicines as well as in the synthesis of fine chemicals and intermediates. At the same time, special attention is devoted to the application of gold catalysts to fine chemical synthesis due to their outstanding activity and/or selectivity for transformations of complex organic compounds. Conversion of renewable terpenoids in the presence of gold nanoparticles is one of the new and promising directions in the transformation of biomass to valuable chemicals. In the doctoral thesis, different kinds of natural terpenoids, such as α-pinene, myrtenol and carvone were selected as starting materials. Gold catalysts were utilized for the promising routes of these compounds transformation. Investigation of selective α-pinene isomerization to camphene, which is an important step in an industrial process towards the synthesis of camphor as well as other valuable substrates for the pharmaceutical industry, was performed. A high activity of heterogeneous gold catalysts in the Wagner-Meerwein rearrangement was demonstrated for the first time. Gold on alumina carrier was found to reach the α-pinene isomerization conversion up to 99.9% and the selectivity of 60-80%, thus making this catalyst very promising from an industrial viewpoint. A detailed investigation of kinetic regularities including catalyst deactivation during the reaction was performed. The one-pot terpene alcohol amination, which is a promising approach to the synthesis of valuable complex amines having specific physiological properties, was investigated. The general regularities of the one-pot natural myrtenol amination in the presence of gold catalysts as well as a correlation between catalytic activity, catalyst redox treatment and the support nature were obtained. Catalytic activity and product distribution were shown to be strongly dependent on the support properties, namely acidity and basicity. The gold-zirconia (Au/ZrO2) catalyst pretreated under oxidizing atmosphere was observed to be rather active, resulting in the total conversion of myrtenol and the selectivity to the corresponding amine of about 53%. The reaction kinetics was modelled based on the mechanistic considerations with the catalyst deactivation step incorporated in the mechanism. Carvone hydrogenation over a gold catalyst was studied with the general idea of investigating both the activity of gold catalysts in competitive hydrogenation of different functional groups and developing an approach to the synthesis of valuable carvone derivatives. Gold was found to promote stereo- and chemoselective carvone hydrogenation to dihydrocarvone with a predominant formation of the trans-isomer, which generally is a novel synthetic method for an industrially valuable dihydrocarvone. The solvent effect on the catalytic activity as well as on the ratio between trans- and cis-dihydrocarvone was evaluated.
Resumo:
This thesis examines the interdependence of international stock markets (the USA, Europe, Japan, emerging markets, and frontier markets), European government bond market, and gold market during the 21st century. Special focus is on the dynamics of the correlations between the markets, as well as on, spillovers in mean returns and volatility. The mean return spillovers are examined on the basis of the bivariate VAR(1) model, whereas the bivariate BEKK-GARCH(1, 1) model is employed for the analysis of the volatility spillovers. In order to analyze the spillover effects in different market conditions, the full sample period from 2000 to 2013 is divided into the pre-crisis period (2000–2006) and the crisis period (2007–2013). The results indicate an increasing interdependence especially within international stock markets during the periods of financial turbulence, and are thus consistent with the existing literature. Hence, bond and gold markets provide the best diversification benefits for equity investors, particularly during the periods of market turmoil.
Resumo:
The aim of this Master’s thesis was to review some methods that are already being utilized in a field of mine water purification and to find and study possible new methods and chemicals for mine water purification by precipitation. The target was also to list the optimal process conditions for these precipitating chemicals. Separation methods were reviewed for several anions and cations, but being a real topical issue, sulphate removal was selected to be in the main focus. Sulphate salts e.g. Na2SO4 are relatively soluble in water, which makes the separation processes difficult. Eutectic freeze crystallization was studied more closely in laboratory tests for sodium sulphate removal. Gravimetric solubility tests were made for three cases of mixed electrolyte solutions: Na2SO4 – NaOH, BaSO4 – NaOH and Na3PO4 – NaOH. The aim of these experiments was to study the effect of NaOH addition on solubility of the studied salt. These phenomena were however noticed to be difficult to see in the used laboratory tests. Thus mathematical modelling was utilized to contribute the laboratory experiments and to bring additional information of the influence of NaOH presence on solubility of selected electrolytes, Na2SO4 and Na3PO4. The results from mathematical modelling of activity coefficients suggest Na2SO4 and Na3PO4 to be precipitated rather with presence and with higher concentrations of NaOH, since the raise of NaOH concentration decreases the solubility of these electrolytes in water.
Resumo:
The acid mining drainage is considered the most significant environmental pollution problem around the world for the extensive formation acidic leachates containing heavy metals. Adsorption is widely used methods in water treatment due to it easy operation and the availability of a wide variety of commercial adsorbent (low cost). The primary goal of this thesis was to investigate the efficiency of neutralizing agents, CaCO3 and CaSiO3, and metal adsorption materials with unmodified limestone from Company Nordkalk Oy. In addition to this, the side materials of limestone mining were tested for iron adsorption from acidic model solution. This study was executed at Lappeenranta University of Technology, Finland. The work utilised fixed-bed adsorption column as the main equipment and large fluidized column. Atomic absorption spectroscopy (AAS) and x-ray diffraction (XRD) was used to determine ferric removal and the composition of material respectively. The results suggest a high potential for the studied materials to be used a low cost adsorbents in acid mine drainage treatment. From the two studied adsorbents, the FS material was more suitable than the Gotland material. Based on the findings, it is recommended that further studies might include detailed analysis of Gotland materials.
Resumo:
Julkaisussa: Voyage en Sibérie fait par ordre du Roi en 1761
Resumo:
Julkaisussa: Voyage en Sibérie fait par ordre du Roi en 1761
Resumo:
Reverse osmosis and nanofiltration are among the most effective and widely used desalination and water softening technologies. They can also be used to treat mining wastewaters and are capable of producing water of extremely high purity, regardless of the high concentrations of toxic heavy metals and extreme pH and salinity. However, challenges with recovering the salts and metals from mining wastewaters in exploitable form, as well as problems with scaling still limit the process efficiency and the ratio of purified water recoverable from process waters. To address the problem of membrane scaling caused by calcium sulfate, batch filtration experiments with the Desal-5 DL nanofiltration membrane, three commercial antiscalants and actual mine process water from a copper mine were performed. The aim of these experiments was to find process conditions where maximum water recovery would be achieved before significant scaling or irreversible membrane fouling would occur and to further improve water recovery by addition of antiscalants. Water recovery of 70 % was reached with the experimental setups by optimizing process conditions. PC-504T antiscaling agent was determined to be the most effective of the three antiscalants used and the addition of 5 ppm of PC-504T allowed the water recovery to be further increased from 70 % to 85 % before major scaling was observed. In these conditions 92 % calcium rejection was achieved.