50 resultados para Forecast of harvest
Resumo:
The report describes those factors of the future that are related to the growth and needs of Russia, China, and India and that may provide significant internationalisation potential for Uusimaa companies. The report examines the emerging trends and market-entry challenges for each country separately. Additionally, it evaluates the training needs of Uusimaa companies in terms of the current offerings available for education on topics related to Russia, China, and India. The report was created via the Delphi method: experts were interviewed, and both Trendwiki material and the latest literature were used to create a summary of experts’ views, statements, and reasons behind recent developments. This summary of views was sent back to the experts with the objective of reaching consensus synthesising the differing views or, at least, of providing argumentation for the various alternative lines of development. In addition to a number of outside experts and business leaders, all heads of Finpro’s Finland Trade Centers participated in the initial interviews. The summary was commented upon by all Finpro consultants and analysts for Russia, China, and India, with each focusing on his or her own area of expertise. The literature used consisted of reports, listed for each country, and an extensive selection of the most recent newspaper articles. The report was created in January-April 2010. On 22 April 2010 its results were reviewed at the final report presentation in cooperation with the Uusimaa ELY Centre.
Resumo:
Volatility has a central role in various theoretical and practical applications in financial markets. These include the applications related to portfolio theory, derivatives pricing and financial risk management. Both theoretical and practical applications require good estimates and forecasts for the asset return volatility. The goal of this study is to examine the forecast performance of one of the more recent volatility measures, model-free implied volatility. Model-free implied volatility is extracted from the prices in the option markets, and it aims to provide an unbiased estimate for the market’s expectation on the future level of volatility. Since it is extracted from the option prices, model-free implied volatility should contain all the relevant information that the market participants have. Moreover, model-free implied volatility requires less restrictive assumptions than the commonly used Black-Scholes implied volatility, which means that it should be less biased estimate for the market’s expectations. Therefore, it should also be a better forecast for the future volatility. The forecast performance of model-free implied volatility is evaluated by comparing it to the forecast performance of Black-Scholes implied volatility and GARCH(1,1) forecast. Weekly forecasts for six years period were calculated for the forecasted variable, German stock market index DAX. The data consisted of price observations for DAX index options. The forecast performance was measured using econometric methods, which aimed to capture the biasedness, accuracy and the information content of the forecasts. The results of the study suggest that the forecast performance of model-free implied volatility is superior to forecast performance of GARCH(1,1) forecast. However, the results also suggest that the forecast performance of model-free implied volatility is not as good as the forecast performance of Black-Scholes implied volatility, which is against the hypotheses based on theory. The results of this study are consistent with the majority of prior research on the subject.
Resumo:
Tämän hetken trendit kuten globalisoituminen, ympäristömme turbulenttisuus, elintason nousu, turvallisuuden tarpeen kasvu ja teknologian kehitysnopeus korostavatmuutosten ennakoinnin tarpeellisuutta. Pysyäkseen kilpailukykyisenä yritysten tulee kerätä, analysoida ja hyödyntää liiketoimintatietoa, jokatukee niiden toimintaa viranomaisten, kilpailijoiden ja asiakkaiden toimenpiteiden ennakoinnissa. Innovoinnin ja uusien konseptien kehittäminen, kilpailijoiden toiminnan arviointi, asiakkaiden tarpeet muun muassa vaativatennakoivaa arviointia. Heikot signaalit ovat keskeisessä osassa organisaatioiden valmistautumisessa tulevaisuuden tapahtumiin. Opinnäytetyön tarkoitus on luoda ja kehittää heikkojen signaalien ymmärrystä ja hallintaa sekäkehittää konseptuaalinen ja käytännöllinen lähestymistapa ennakoivan toiminnan edistämiselle. Heikkojen signaalien tyyppien luokittelu perustuu ominaisuuksiin ajan, voimakkuuden ja liiketoimintaan integroinnin suhteen. Erityyppiset heikot signaalit piirteineen luovat reunaehdot laatutekijöiden keräämiselle ja siitä edelleen laatujärjestelmän ja matemaattiseen malliin perustuvan työvälineen kehittämiselle. Heikkojen signaalien laatutekijät on kerätty yhteen kaikista heikkojen signaalien konseptin alueista. Analysoidut ja kohdistetut laatumuuttujat antavat mahdollisuuden kehittää esianalyysiä ja ICT - työvälineitä perustuen matemaattisen mallin käyttöön. Opinnäytetyön tavoitteiden saavuttamiseksi tehtiin ensin Business Intelligence -kirjallisuustutkimus. Hiekkojen signaalien prosessi ja systeemi perustuvat koottuun Business Intelligence - systeemiin. Keskeisinä kehitysalueina tarkasteltiin liiketoiminnan integraatiota ja systemaattisen menetelmän kehitysaluetta. Heikkojen signaalien menetelmien ja määritelmien kerääminen sekä integrointi määriteltyyn prosessiin luovat uuden konseptin perustan, johon tyypitys ja laatutekijät kytkeytyvät. Käytännöllisen toiminnan tarkastelun ja käyttöönoton mahdollistamiseksi toteutettiin Business Intelligence markkinatutkimus (n=156) sekä yhteenveto muihin saatavilla oleviin markkinatutkimuksiin. Syvähaastatteluilla (n=21) varmennettiin laadullisen tarkastelun oikeellisuus. Lisäksi analysoitiin neljä käytännön projektia, joiden yhteenvedot kytkettiin uuden konseptin kehittämiseen. Prosessi voidaan jakaa kahteen luokkaan: yritysten markkinasignaalit vuoden ennakoinnilla ja julkisen sektorin verkostoprojektit kehittäen ennakoinnin struktuurin luonnin 7-15 vuoden ennakoivalle toiminnalle. Tutkimus rajattiin koskemaan pääasiassa ulkoisen tiedon aluetta. IT työvälineet ja lopullisen laatusysteemin kehittäminen jätettiin tutkimuksen ulkopuolelle. Opinnäytetyön tavoitteena ollut heikkojen signaalien konseptin kehittäminen toteutti sille asetetut odotusarvot. Heikkojen signaalien systemaattista tarkastelua ja kehittämistyötä on mahdollista edistää Business Intelligence - systematiikan hyödyntämisellä. Business Intelligence - systematiikkaa käytetään isojen yritysten liiketoiminnan suunnittelun tukena.Organisaatioiden toiminnassa ei ole kuitenkaan yleisesti hyödynnetty laadulliseen analyysiin tukeutuvaa ennakoinnin weak signals - toimintaa. Ulkoisenja sisäisen tiedon integroinnin ja systematiikan hyödyt PK -yritysten tukena vaativat merkittävää panostusta julkishallinnon rahoituksen ja kehitystoiminnan tukimuotoina. Ennakointi onkin tuottanut lukuisia julkishallinnon raportteja, mutta ei käytännön toteutuksia. Toisaalta analysoitujen case-tapausten tuloksena voidaan nähdä, ettei organisaatioissa välttämättä tarvita omaa projektipäällikköä liiketoiminnan tuen kehittämiseksi. Business vastuun ottamiseksi ja asiaan sitoutumiseen on kuitenkin löydyttävä oikea henkilö
Resumo:
Sähkönkulutuksen lyhyen aikavälin ennustamista on tutkittu jo pitkään. Pohjoismaisien sähkömarkkinoiden vapautuminen on vaikuttanut sähkönkulutuksen ennustamiseen. Aluksi työssä perehdyttiin aiheeseen liittyvään kirjallisuuteen. Sähkönkulutuksen käyttäytymistä tutkittiin eri aikoina. Lämpötila tilastojen käyttökelpoisuutta arvioitiin sähkönkulutusennustetta ajatellen. Kulutus ennusteet tehtiin tunneittain ja ennustejaksona käytettiin yhtä viikkoa. Työssä tutkittiin sähkönkulutuksen- ja lämpötiladatan saatavuutta ja laatua Nord Poolin markkina-alueelta. Syötettävien tietojen ominaisuudet vaikuttavat tunnittaiseen sähkönkulutuksen ennustamiseen. Sähkönkulutuksen ennustamista varten mallinnettiin kaksi lähestymistapaa. Testattavina malleina käytettiin regressiomallia ja autoregressiivistä mallia (autoregressive model, ARX). Mallien parametrit estimoitiin pienimmän neliösumman menetelmällä. Tulokset osoittavat että kulutus- ja lämpötiladata on tarkastettava jälkikäteen koska reaaliaikaisen syötetietojen laatu on huonoa. Lämpötila vaikuttaa kulutukseen talvella, mutta se voidaan jättää huomiotta kesäkaudella. Regressiomalli on vakaampi kuin ARX malli. Regressiomallin virhetermi voidaan mallintaa aikasarjamallia hyväksikäyttäen.
Resumo:
Tämä tutkimus oli osa sähköistä liiketoimintaa ja langattomia sovelluksia tutkivaa projektia ja tutkimuksen tavoitteena oli selvittää ennustamisen rooli päätöksenteko- ja suunnitteluprosessissa ja määrittää parhaiten soveltuvat ja useimmin käytetyt teknologian ennustusmenetelmät. Ennustusmenetelmiä tarkasteltiin erityisesti uuden teknologian ja pitkän aikavälin ennustamisen näkökulmasta. Tutkimus perustui teknologista ennustamista, pitkän aikavälin suunnittelua ja innovaatioprosesseja käsittelevän kirjallisuuden analysointiin. Materiaalin perusteella kuvataan teknologian ennustamista informaation hankkimisvälineenä organisaatioiden suunnitteluprosessin apuna. Työssä arvioidaan myös seuraavat teknologisen ennustamisen menetelmät: trendianalyysi-, Delfoi-, cross-impact analyysi-, morfologinen analyysi- ja skenaario analyysimenetelmä. Työ tuo esille jokaisen ennustusmenetelmä ominaispiirteet, rajoitukset ja sovellusmahdollisuudet. Käyttäen esiteltyjä menetelmiä, saadaan kerättyä hyödyllistä informaatiota tulevaisuuden näkymistä, joita sitten voidaan käyttää hyväksi organisaatioiden suunnitteluprosesseissa.
Resumo:
The purpose of the research is to define practical profit which can be achieved using neural network methods as a prediction instrument. The thesis investigates the ability of neural networks to forecast future events. This capability is checked on the example of price prediction during intraday trading on stock market. The executed experiments show predictions of average 1, 2, 5 and 10 minutes’ prices based on data of one day and made by two different types of forecasting systems. These systems are based on the recurrent neural networks and back propagation neural nets. The precision of the predictions is controlled by the absolute error and the error of market direction. The economical effectiveness is estimated by a special trading system. In conclusion, the best structures of neural nets are tested with data of 31 days’ interval. The best results of the average percent of profit from one transaction (buying + selling) are 0.06668654, 0.188299453, 0.349854787 and 0.453178626, they were achieved for prediction periods 1, 2, 5 and 10 minutes. The investigation can be interesting for the investors who have access to a fast information channel with a possibility of every-minute data refreshment.
Resumo:
The main objective of the study is to form a framework that provides tools to recognise and classify items whose demand is not smooth but varies highly on size and/or frequency. The framework will then be combined with two other classification methods in order to form a three-dimensional classification model. Forecasting and inventory control of these abnormal demand items is difficult. Therefore another object of this study is to find out which statistical forecasting method is most suitable for forecasting of abnormal demand items. The accuracy of different methods is measured by comparing the forecast to the actual demand. Moreover, the study also aims at finding proper alternatives to the inventory control of abnormal demand items. The study is quantitative and the methodology is a case study. The research methods consist of theory, numerical data, current state analysis and testing of the framework in case company. The results of the study show that the framework makes it possible to recognise and classify the abnormal demand items. It is also noticed that the inventory performance of abnormal demand items differs significantly from the performance of smoothly demanded items. This makes the recognition of abnormal demand items very important.
Resumo:
In a very volatile industry of high technology it is of utmost importance to accurately forecast customers’ demand. However, statistical forecasting of sales, especially in heavily competitive electronics product business, has always been a challenging task due to very high variation in demand and very short product life cycles of products. The purpose of this thesis is to validate if statistical methods can be applied to forecasting sales of short life cycle electronics products and provide a feasible framework for implementing statistical forecasting in the environment of the case company. Two different approaches have been developed for forecasting on short and medium term and long term horizons. Both models are based on decomposition models, but differ in interpretation of the model residuals. For long term horizons residuals are assumed to represent white noise, whereas for short and medium term forecasting horizon residuals are modeled using statistical forecasting methods. Implementation of both approaches is performed in Matlab. Modeling results have shown that different markets exhibit different demand patterns and therefore different analytical approaches are appropriate for modeling demand in these markets. Moreover, the outcomes of modeling imply that statistical forecasting can not be handled separately from judgmental forecasting, but should be perceived only as a basis for judgmental forecasting activities. Based on modeling results recommendations for further deployment of statistical methods in sales forecasting of the case company are developed.
Resumo:
Seaports play an important part in the wellbeing of a nation. Many nations are highly dependent on foreign trade and most trade is done using sea vessels. This study is part of a larger research project, where a simulation model is required in order to create further analyses on Finnish macro logistical networks. The objective of this study is to create a system dynamic simulation model, which gives an accurate forecast for the development of demand of Finnish seaports up to 2030. The emphasis on this study is to show how it is possible to create a detailed harbor demand System Dynamic model with the help of statistical methods. The used forecasting methods were ARIMA (autoregressive integrated moving average) and regression models. The created simulation model gives a forecast with confidence intervals and allows studying different scenarios. The building process was found to be a useful one and the built model can be expanded to be more detailed. Required capacity for other parts of the Finnish logistical system could easily be included in the model.
Resumo:
Russian and Baltic electricity markets are in the process of reformation and development on the way for competitive and transparent market. Nordic market also undergoes some changes on the way to market integration. Old structure and practices have been expired whereas new laws and rules come into force. The master thesis describes structure and functioning of wholesale electricity markets, cross-border connections between different countries. Additionally methods of cross-border trading using different methods of capacity allocation are disclosed. The main goal of present thesis is to study current situation at different electricity markets and observe changes coming into force as well as the capacity and electricity balances forecast in order to optimize short term power trading between countries and estimate the possible profit for the company.
Resumo:
The main objective of this master’s thesis was to quantitatively study the reliability of market and sales forecasts of a certain company by measuring bias, precision and accuracy of these forecasts by comparing forecasts against actual values. Secondly, the differences of bias, precision and accuracy between markets were explained by various macroeconomic variables and market characteristics. Accuracy and precision of the forecasts seems to vary significantly depending on the market that is being forecasted, the variable that is being forecasted, the estimation period, the length of the estimated period, the forecast horizon and the granularity of the data. High inflation, low income level and high year-on-year market volatility seems to be related with higher annual market forecast uncertainty and high year-on-year sales volatility with higher sales forecast uncertainty. When quarterly market size is forecasted, correlation between macroeconomic variables and forecast errors reduces. Uncertainty of the sales forecasts cannot be explained with macroeconomic variables. Longer forecasts are more uncertain, shorter estimated period leads to higher uncertainty, and usually more recent market forecasts are less uncertain. Sales forecasts seem to be more uncertain than market forecasts, because they incorporate both market size and market share risks. When lead time is more than one year, forecast risk seems to grow as a function of root forecast horizon. When lead time is less than year, sequential error terms are typically correlated, and therefore forecast errors are trending or mean-reverting. The bias of forecasts seems to change in cycles, and therefore the future forecasts cannot be systematically adjusted with it. The MASE cannot be used to measure whether the forecast can anticipate year-on-year volatility. Instead, we constructed a new relative accuracy measure to cope with this particular situation.
Resumo:
The Gulf of Finland is said to be one of the densest operated sea areas in the world. It is a shallow and economically vulnerable sea area with dense passenger and cargo traffic of which petroleum transports have a share of over 50 %. The winter conditions add to the risks of maritime traffic in the Gulf of Finland. It is widely believed that the growth of maritime transportation will continue also in the future. The Gulf of Finland is surrounded by three very different national economies with, different maritime transportation structures. Finland is a country of high GDP/per capita with a diversified economic structure. The number of ports is large and the maritime transportation consists of many types of cargoes: raw materials, industrial products, consumer goods, coal and petroleum products, and the Russian transit traffic of e.g. new cars and consumer goods. Russia is a large country with huge growth potential; in recent years, the expansion of petroleum exports has lead to a strong economic growth, which is also apparent in the growth of maritime transports. Russia has been expanding its port activities in the Gulf of Finland and it is officially aiming to transport its own imports and exports through the Russian ports in the future; now they are being transported to great extend through the Finnish, Estonian and other Baltic ports. Russia has five ports in the Gulf of Finland. Estonia has also experienced fast economic growth, but the growth has been slowing down already during the past couples of years. The size of its economy is small compared to Russia, which means the transported tonnes cannot be very massive. However, relatively large amounts of the Russian petroleum exports have been transported through the Estonian ports. The future of the Russian transit traffic in Estonia looks nevertheless uncertain and it remains to be seen how it will develop and if Estonia is able to find replacing cargoes if the Russian transit traffic will come to an end in the Estonian ports. Estonia’s own import and export consists of forestry products, metals or other raw materials and consumer goods. Estonia has many ports on the shores of the Gulf of Finland, but the port of Tallinn dominates the cargo volumes. In 2007, 263 M tonnes of cargoes were transported in the maritime traffic in the Gulf of Finland, of which the share of petroleum products was 56 %. 23 % of the cargoes were loaded or unloaded in the Finnish ports, 60 % in the Russian ports and 17 % in the Estonian ports. The largest ports were Primorsk (74.2 M tonnes) St. Petersburg (59.5 M tonnes), Tallinn (35.9 M tonnes), Sköldvik (19.8 M tonnes), Vysotsk (16.5 M tonnes) and Helsinki (13.4 M) tonnes. Approximately 53 600 ship calls were made in the ports of the Gulf of Finland. The densest traffic was found in the ports of St. Petersburg (14 651 ship calls), Helsinki (11 727 ship calls) and Tallinn (10 614 ship calls) in 2007. The transportation scenarios are usually based on the assumption that the amount of transports follows the development of the economy, although also other factors influence the development of transportation, e.g. government policy, environmental aspects, and social and behavioural trends. The relationship between the development of transportation and the economy is usually analyzed in terms of the development of GDP and trade. When the GDP grows to a certain level, especially the international transports increase because countries of high GDP produce, consume and thus transport more. An effective transportation system is also a precondition for the economic development. In this study, the following factors were taken into consideration when formulating the future scenarios: maritime transportation in the Gulf of Finland 2007, economic development, development of key industries, development of infrastructure and environmental aspects in relation to maritime transportation. The basic starting points for the three alternative scenarios were: • the slow growth scenario: economic recession • the average growth scenario: economy will recover quickly from current instability • the strong growth scenario: the most optimistic views on development will realize According to the slow growth scenario, the total tonnes for the maritime transportation in the Gulf of Finland would be 322.4 M tonnes in 2015, which would mean a growth of 23 % compared to 2007. In the average growth scenario, the total tonnes were estimated to be 431.6 M tonnes – a growth of 64 %, and in the strong growth scenario 507.2 M tonnes – a growth of 93%. These tonnes were further divided into petroleum products and other cargoes by country, into export, import and domestic traffic by country, and between the ports. For petroleum products, the share of crude oil and oil products was estimated and the number of tanker calls in 2015 was calculated for each scenario. However, the future development of maritime transportation in the GoF is dependent on so many societal and economic variables that it is not realistic to predict one exact point estimate value for the cargo tonnes for a certain scenario. Plenty of uncertainty is related both to the degree in which the scenario will come true as well as to the cause-effect relations between the different variables. For these reasons, probability distributions for each scenario were formulated by an expert group. As a result, a range for the total tonnes of each scenario was formulated and they are as follows: the slow growth scenario: 280.8 – 363 M tonnes (expectation value 322.4 M tonnes)