31 resultados para Electric circuit analysis.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the Thesis was to evaluate the business environment of electrical vehicle charging equipment (EVSE) in USA, find the key issues of entering the US EVSE markets and to form a marketing plan for possible market entry. The external market research analyzed the environment, customers, competitors and demand of EVSEs. In the internal analysis the focus was on resources and capabilities, offering, performance, business relations and US related issues. The research about the business environment was done using already available information from market studies and seminars. In external analysis there were also two semi-structured interviews from market experts used. The internal analysis was done mostly by interviews, but also company’s internal data sources were used. The interviews were semi-constructed and included eight interviewees from each part of EVSE value chain. The research findings were analyzed using SWOT analysis, which was converted to a so called TOWS matrix for extracting strategies. As a result of the Thesis, valuable information about the US markets and their requirements for EVSEs was gained. By matching the strengths of the case company and market requirements, customer segmentation and targeting were done and a marketing plan was constructed for the case company to help their management to evaluate the feasibility of possible market entry and investments to USA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This master’s thesis mainly focuses on the design requirements of an Electric drive for Hybrid car application and its control strategy to achieve a wide speed range. It also emphasises how the control and performance requirements are transformed into its design variables. A parallel hybrid topology is considered where an IC engine and an electric drive share a common crank shaft. A permanent magnet synchronous machine (PMSM) is used as an electric drive machine. Performance requirements are converted into Machine design variables using the vector model of PMSM. Main dimensions of the machine are arrived using analytical approach and Finite Element Analysis (FEA) is used to verify the design and performance. Vector control algorithm was used to control the machine. The control algorithm was tested in a low power PMSM using an embedded controller. A prototype of 10 kW PMSM was built according to the design values. The prototype was tested in the laboratory using a high power converter. Tests were carried out to verify different operating modes. The results were in agreement with the calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This doctoral thesis presents a study on the development of a liquid-cooled frame salient pole permanent-magnet-exited traction machine for a four-wheel-driven electric car. The emphasis of the thesis is put on a radial flux machine design in order to achieve a light-weight machine structure for traction applications. The design features combine electromagnetic and thermal design methods, because traction machine operation does not have a strict operating point. Arbitrary load cycles and the flexible supply require special attention in the design process. It is shown that accurate modelling of the machine magnetic state is essential for high-performance operation. The saturation effect related to the cross-saturation has to be taken carefully into account in order to achieve the desired operation. Two prototype machines have been designed and built for testing: one totally enclosed machine with a special magnet module pole arrangement and another through-ventilated machine with a more traditional embedded magnet structure. Both structures are built with magnetically salient structures in order to increase the torque production capability with the reluctance torque component. Both machine structures show potential for traction usage. However, the traditional embedded magnet design turns out to be mechanically the more secure one of these two machine options.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurement is a tool for researching. Therefore, it is important that the measuring process is carried out correctly, without distorting the signal or the measured event. Researches of thermoelectric phenomena have been focused more on transverse thermoelectric phenomena during recent decades. Transverse Seebeck effect enables to produce thinner and faster heat flux sensor than before. Studies about transverse Seebeck effect have so far focused on materials, so in this Master’s Thesis instrumentation of transverse Seebeck effect based heat flux sensor is studied, This Master’s Thesis examines an equivalent circuit of transverse Seebeck effect heat flux sensors, their connectivity to electronics and choosing and design a right type amplifier. The research is carried out with a case study which is Gradient Heat Flux Sensors and an electrical motor. In this work, a general equivalent circuit was presented for the transverse Seebeck effect-based heat flux sensor. An amplifier was designed for the sensor of the case study, and the solution was produced for the measurement of the local heat flux of the electric motor to improve the electromagnetic compatibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study is a survey of benefits and drawbacks of embedding a variable gearbox instead of a single reduction gear in electric vehicle powertrain from efficiency point of view. Losses due to a pair of spur gears meshing with involute teeth are modeled on the base of Coulomb’s law and fluid mechanics. The model for a variable gearbox is fulfilled and further employed in a complete vehicle simulation. Simulation model run for a single reduction gear then the results are taken as benchmark for other types of commonly used transmissions. Comparing power consumption, which is obtained from simulation model, shows that the extra load imposed by variable transmission components will shade the benefits of efficient operation of electric motor. The other accomplishment of this study is a combination of modified formulas that led to a new methodology for power loss prediction in gear meshing which is compatible with modern design and manufacturing technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Communications play a key role in modern smart grids. New functionalities that make the grids ‘smart’ require the communication network to function properly. Data transmission between intelligent electric devices (IEDs) in the rectifier and the customer-end inverters (CEIs) used for power conversion is also required in the smart grid concept of the low-voltage direct current (LVDC) distribution network. Smart grid applications, such as smart metering, demand side management (DSM), and grid protection applied with communications are all installed in the LVDC system. Thus, besides remote connection to the databases of the grid operators, a local communication network in the LVDC network is needed. One solution applied to implement the communication medium in power distribution grids is power line communication (PLC). There are power cables in the distribution grids, and hence, they may be applied as a communication channel for the distribution-level data. This doctoral thesis proposes an IP-based high-frequency (HF) band PLC data transmission concept for the LVDC network. A general method to implement the Ethernet-based PLC concept between the public distribution rectifier and the customerend inverters in the LVDC grid is introduced. Low-voltage cables are studied as the communication channel in the frequency band of 100 kHz–30 MHz. The communication channel characteristics and the noise in the channel are described. All individual components in the channel are presented in detail, and a channel model, comprising models for each channel component is developed and verified by measurements. The channel noise is also studied by measurements. Theoretical signalto- noise ratio (SNR) and channel capacity analyses and practical data transmission tests are carried out to evaluate the applicability of the PLC concept against the requirements set by the smart grid applications in the LVDC system. The main results concerning the applicability of the PLC concept and its limitations are presented, and suggestion for future research proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tässä työssä on tutkittu modulaarisen aktiivimagneettilaakeroidun koelaitteen mekaanista suunnittelua ja analysointia. Suurnopeusroottorin suunnittelun teoria on esitelty. Lisäksi monia analyyttisiä mallinnusmenetelmiä mekaanisten kuormitusten mallintamiseksi on esitelty. Koska kyseessä on suurnopeussähkökone, roottoridynamiikka ja sen soveltuvuus suunnittelussa on esitelty. Magneettilaakerien rakenteeseen ja toimintaan on tutustuttu osana tätä työtä. Kirjallisuuskatsaus nykyisistä koelaitteista esimerkiksi komponenttien ominaisuuksien tunnistamiseen ja roottoridynamiikan tutkimuksiin on esitelty. Työn rajauksena on konseptisuunnittelu muunneltavalle magneettilaakeroidulle (AMB) koelaitteelle ja suunnitteluprosessin dokumentointi. Muunneltavuuteen päädyttiin, koska se mahdollistaa erilaisten komponenttiasetteluiden testaamisen erilaisille magneettilaakerikokoonpanoille ja roottoreille. Pääpaino tässä työssä on suurnopeus induktiokoneen roottorin suunnittelussa ja mallintamisessa. Modulaaristen toimilaitteiden kuten magneettilaakerien ja induktiosähkömoottorin rakenne on esitelty ja modulaarisen rakenteen käytettävyyden hyödyistä koelaitekäytössä on dokumentoitu. Analyyttisiä ja elementtimenetelmään perustuvia tutkimusmenetelmiä on käytetty tutkittaessa suunniteltua suurnopeusroottoria. Suunnittelun ja analysoinnin tulokset on esitelty ja verrattu keskenään eri mallinnusmenetelmien välillä. Lisäksi johtopäätökset sähkömagneettisten osien liittämisen monimutkaisuudesta ja vaatimuksista roottoriin ja toimilaitteisiin sekä mekaanisten että sähkömagneettisten ominaisuuksien optimoimiseksi on dokumentoitu.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this thesis was to study the effect of pulsed electric field on the preparation of TiO2 nanoparticles via sol-gel method. The literature part deals with properties of different TiO2 crystal forms, principles of photocatalysis, sol-gel method and pulsed electric field processing. It was expected that the pulsed electric field would have an influence on crystallite size, specific surface area, polymorphism and photocatalytic activity of produced particles. TiO2 samples were prepared by using different frequencies and treatment times of pulsed electric field. The properties of produced TiO2 particles were examined X-ray diffraction (XRD), Raman spectroscopy and BET surface area analysis. The photocatalytic activities of produced TiO2 particles were determined by using them as photocatalysts for the degradation of formic acid under UVA-light. The photocatalytic activities of samples produced with sol-gel method were also compared with the commercial TiO2 powder Aeroxide® (Evonic Degussa GmbH). Pulsed electric field did not have an effect on the morphology of particles. Results from XRD and Raman analysis showed that all produced TiO2 samples were pure anatase. However, pulsed electric field did have an effect on crystallite size, specific surface area and photocatalytic activity of TiO2 particles. Generally, the crystallite sizes were smaller, specific surface areas larger and initial formic acid degradation rates higher for samples that were produced by applying the pulsed electric field. The higher photocatalytic activities were attributed to larger surface areas and smaller crystallite sizes. Though, with all of the TiO2 samples produced by the sol-gel method the initial formic acid degradation rates were significantly slower than with the commercial TiO2 powder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design process of direct-driven permanent magnet synchronous machines (PMSMs) for a full electric 4 ´ 4 sports car is presented. The rotor structure of the machine consists of two permanent magnet layers embedded inside the rotor laminations thus resulting in some inverse saliency, where the q-axis inductance is larger than the d-axis one. An integer slot stator winding was selected to fully take advantage of the additional reluctance torque. The performance characteristics of the designed PMSMs were calculated by applying a twodimensional finite element method. Cross-saturation between the d- and q-axes was taken into account in the calculation of the synchronous inductances. The calculation results are validated by measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Permanent magnet synchronous machines (PMSM) have become widely used in applications because of high efficiency compared to synchronous machines with exciting winding or to induction motors. This feature of PMSM is achieved through the using the permanent magnets (PM) as the main excitation source. The magnetic properties of the PM have significant influence on all the PMSM characteristics. Recent observations of the PM material properties when used in rotating machines revealed that in all PMSMs the magnets do not necessarily operate in the second quadrant of the demagnetization curve which makes the magnets prone to hysteresis losses. Moreover, still no good analytical approach has not been derived for the magnetic flux density distribution along the PM during the different short circuits faults. The main task of this thesis is to derive simple analytical tool which can predict magnetic flux density distribution along the rotor-surface mounted PM in two cases: during normal operating mode and in the worst moment of time from the PM’s point of view of the three phase symmetrical short circuit. The surface mounted PMSMs were selected because of their prevalence and relatively simple construction. The proposed model is based on the combination of two theories: the theory of the magnetic circuit and space vector theory. The comparison of the results in case of the normal operating mode obtained from finite element software with the results calculated with the proposed model shows good accuracy of model in the parts of the PM which are most of all prone to hysteresis losses. The comparison of the results for three phase symmetrical short circuit revealed significant inaccuracy of the proposed model compared with results from finite element software. The analysis of the inaccuracy reasons was provided. The impact on the model of the Carter factor theory and assumption that air have permeability of the PM were analyzed. The propositions for the further model development are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical machine drives are the most electrical energy-consuming systems worldwide. The largest proportion of drives is found in industrial applications. There are, however many other applications that are also based on the use of electrical machines, because they have a relatively high efficiency, a low noise level, and do not produce local pollution. Electrical machines can be classified into several categories. One of the most commonly used electrical machine types (especially in the industry) is induction motors, also known as asynchronous machines. They have a mature production process and a robust rotor construction. However, in the world pursuing higher energy efficiency with reasonable investments not every application receives the advantage of using this type of motor drives. The main drawback of induction motors is the fact that they need slipcaused and thus loss-generating current in the rotor, and additional stator current for magnetic field production along with the torque-producing current. This can reduce the electric motor drive efficiency, especially in low-speed, low-power applications. Often, when high torque density is required together with low losses, it is desirable to apply permanent magnet technology, because in this case there is no need to use current to produce the basic excitation of the machine. This promotes the effectiveness of copper use in the stator, and further, there is no rotor current in these machines. Again, if permanent magnets with a high remanent flux density are used, the air gap flux density can be higher than in conventional induction motors. These advantages have raised the popularity of PMSMs in some challenging applications, such as hybrid electric vehicles (HEV), wind turbines, and home appliances. Usually, a correctly designed PMSM has a higher efficiency and consequently lower losses than its induction machine counterparts. Therefore, the use of these electrical machines reduces the energy consumption of the whole system to some extent, which can provide good motivation to apply permanent magnet technology to electrical machines. However, the cost of high performance rare earth permanent magnets in these machines may not be affordable in many industrial applications, because the tight competition between the manufacturers dictates the rules of low-cost and highly robust solutions, where asynchronous machines seem to be more feasible at the moment. Two main electromagnetic components of an electrical machine are the stator and the rotor. In the case of a conventional radial flux PMSM, the stator contains magnetic circuit lamination and stator winding, and the rotor consists of rotor steel (laminated or solid) and permanent magnets. The lamination itself does not significantly influence the total cost of the machine, even though it can considerably increase the construction complexity, as it requires a special assembly arrangement. However, thin metal sheet processing methods are very effective and economically feasible. Therefore, the cost of the machine is mainly affected by the stator winding and the permanent magnets. The work proposed in this doctoral dissertation comprises a description and analysis of two approaches of PMSM cost reduction: one on the rotor side and the other on the stator side. The first approach on the rotor side includes the use of low-cost and abundant ferrite magnets together with a tooth-coil winding topology and an outer rotor construction. The second approach on the stator side exploits the use of a modular stator structure instead of a monolithic one. PMSMs with the proposed structures were thoroughly analysed by finite element method based tools (FEM). It was found out that by implementing the described principles, some favourable characteristics of the machine (mainly concerning the machine size) will inevitable be compromised. However, the main target of the proposed approaches is not to compete with conventional rare earth PMSMs, but to reduce the price at which they can be implemented in industrial applications, keeping their dimensions at the same level or lower than those of a typical electrical machine used in the industry at the moment. The measurement results of the prototypes show that the main performance characteristics of these machines are at an acceptable level. It is shown that with certain specific actions it is possible to achieve a desirable efficiency level of the machine with the proposed cost reduction methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric energy demand has been growing constantly as the global population increases. To avoid electric energy shortage, renewable energy sources and energy conservation are emphasized all over the world. The role of power electronics in energy saving and development of renewable energy systems is significant. Power electronics is applied in wind, solar, fuel cell, and micro turbine energy systems for the energy conversion and control. The use of power electronics introduces an energy saving potential in such applications as motors, lighting, home appliances, and consumer electronics. Despite the advantages of power converters, their penetration into the market requires that they have a set of characteristics such as high reliability and power density, cost effectiveness, and low weight, which are dictated by the emerging applications. In association with the increasing requirements, the design of the power converter is becoming more complicated, and thus, a multidisciplinary approach to the modelling of the converter is required. In this doctoral dissertation, methods and models are developed for the design of a multilevel power converter and the analysis of the related electromagnetic, thermal, and reliability issues. The focus is on the design of the main circuit. The electromagnetic model of the laminated busbar system and the IGBT modules is established with the aim of minimizing the stray inductance of the commutation loops that degrade the converter power capability. The circular busbar system is proposed to achieve equal current sharing among parallel-connected devices and implemented in the non-destructive test set-up. In addition to the electromagnetic model, a thermal model of the laminated busbar system is developed based on a lumped parameter thermal model. The temperature and temperature-dependent power losses of the busbars are estimated by the proposed algorithm. The Joule losses produced by non-sinusoidal currents flowing through the busbars in the converter are estimated taking into account the skin and proximity effects, which have a strong influence on the AC resistance of the busbars. The lifetime estimation algorithm was implemented to investigate the influence of the cooling solution on the reliability of the IGBT modules. As efficient cooling solutions have a low thermal inertia, they cause excessive temperature cycling of the IGBTs. Thus, a reliability analysis is required when selecting the cooling solutions for a particular application. The control of the cooling solution based on the use of a heat flux sensor is proposed to reduce the amplitude of the temperature cycles. The developed methods and models are verified experimentally by a laboratory prototype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two central goals of this master's thesis are to serve as a guidebook on the determination of uncertainty in efficiency measurements and to investigate sources of uncertainty in efficiency measurements in the field of electric drives by a literature review, mathematical modeling and experimental means. The influence of individual sources of uncertainty on the total instrumental uncertainty is investigated with the help of mathematical models derived for a balance and a direct air cooled calorimeter. The losses of a frequency converter and an induction motor are measured with the input-output method and a balance calorimeter at 50 and 100 % loads. A software linking features of Matlab and Excel is created to process measurement data, calculate uncertainties and to calculate and visualize results. The uncertainties are combined with both the worst case and the realistic perturbation method and distributions of uncertainty by source are shown based on experimental results. A comparison of the calculated uncertainties suggests that the balance calorimeter determines losses more accurately than the input-output method with a relative RPM uncertainty of 1.46 % compared to 3.78 - 12.74 % respectively with 95 % level of confidence at the 93 % induction motor efficiency or higher. As some principles in uncertainty analysis are open to interpretation the views and decisions of the analyst can have noticeable influence on the uncertainty in the measurement result.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the recent years, smart grids have received great public attention. Many proposed functionalities rely on power electronics, which play a key role in the smart grid, together with the communication network. However, “smartness” is not the driver that alone motivates the research towards distribution networks based on power electronics; the network vulnerability to natural hazards has resulted in tightening requirements for the supply security, set both by electricity end-users and authorities. Because of the favorable price development and advancements in the field, direct current (DC) distribution has become an attractive alternative for distribution networks. In this doctoral dissertation, power electronic converters for a low-voltage DC (LVDC) distribution system are investigated. These include the rectifier located at the beginning of the LVDC network and the customer-end inverter (CEI) on the customer premises. Rectifier topologies are introduced, and according to the LVDC system requirements, topologies are chosen for the analysis. Similarly, suitable CEI topologies are addressed and selected for study. Application of power electronics into electricity distribution poses some new challenges. Because the electricity end-user is supplied with the CEI, it is responsible for the end-user voltage quality, but it also has to be able to supply adequate current in all operating conditions, including a short-circuit, to ensure the electrical safety. Supplying short-circuit current with power electronics requires additional measures, and therefore, the short-circuit behavior is described and methods to overcome the high-current supply to the fault are proposed. Power electronic converters also produce common-mode (CM) and radio-frequency (RF) electromagnetic interferences (EMI), which are not present in AC distribution. Hence, their magnitudes are investigated. To enable comprehensive research on the LVDC distribution field, a research site was built into a public low-voltage distribution network. The implementation was a joint task by the LVDC research team of Lappeenranta University of Technology and a power company Suur-Savon S¨ahk¨o Oy. Now, the measurements could be conducted in an actual environment. This is important especially for the EMI studies. The main results of the work concern the short-circuit operation of the CEI and the EMI issues. The applicability of the power electronic converters to electricity distribution is demonstrated, and suggestions for future research are proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this master's thesis is to develop a two-dimensional drift-di usion model, which describes charge transport in organic solar cells. The main bene t of a two-dimensional model compared to a one-dimensional one is the inclusion of the nanoscale morphology of the active layer of a bulk heterojunction solar cell. The developed model was used to study recombination dynamics at the donor-acceptor interface. In some cases, it was possible to determine e ective parameters, which reproduce the results of the two-dimensional model in the one-dimensional case. A summary of the theory of charge transport in semiconductors was presented and discussed in the context of organic materials. Additionally, the normalization and discretization procedures required to nd a numerical solution to the charge transport problem were outlined. The charge transport problem was solved by implementing an iterative scheme called successive over-relaxation. The obtained solution is given as position-dependent electric potential, free charge carrier concentrations and current densities in the active layer. An interfacial layer, separating the pure phases, was introduced in order to describe charge dynamics occurring at the interface between the donor and acceptor. For simplicity, an e ective generation of free charge carriers in the interfacial layer was implemented. The pure phases simply act as transport layers for the photogenerated charges. Langevin recombination was assumed in the two-dimensional model and an analysis of the apparent recombination rate in the one-dimensional case is presented. The recombination rate in a two-dimensional model is seen to e ectively look like reduced Langevin recombination at open circuit. Replicating the J-U curves obtained in the two-dimensional model is, however, not possible by introducing a constant reduction factor in the Langevin recombination rate. The impact of an acceptor domain in the pure donor phase was investigated. Two cases were considered, one where the acceptor domain is isolated and another where it is connected to the bulk of the acceptor. A comparison to the case where no isolated domains exist was done in order to quantify the observed reduction in the photocurrent. The results show that all charges generated at the isolated domain are lost to recombination, but the domain does not have a major impact on charge transport. Trap-assisted recombination at interfacial trap states was investigated, as well as the surface dipole caused by the trapped charges. A theoretical expression for the ideality factor n_id as a function of generation was derived and shown to agree with simulation data. When the theoretical expression was fitted to simulation data, no interface dipole was observed.