32 resultados para Eco drive
Resumo:
A coupled system simulator, based on analytical circuit equations and a finite element method (FEM) model of the motor has been developed and it is used to analyse a frequency-converterfed industrial squirrel-cage induction motor. Two control systems that emulate the behaviour of commercial direct-torque-controlled (DTC) and vector-controlled industrial frequency converters have been studied, implemented in the simulation software and verified by extensive laboratory tests. Numerous factors that affect the operation of a variable speed drive (VSD) and its energy efficiency have been investigated, and their significance in the simulation of the VSD results has been studied. The dependency of the frequency converter, induction motor and system losses on the switching frequency is investigated by simulations and measurements at different speeds for both the vector control and the DTC. Intensive laboratory measurements have been carried out to verify the simulation results.
Resumo:
The objective of this master's thesis is to compare two different generator systems for wind turbines. It is the doubly fed induction generator system with three stage gearbox and the direct drive permanent magnet generator system. The comparison of generator systems is based on annual energy production for a given wind climate. For comparison a 3 MW, 15 rpm wind turbine is used. Modelling of a turbine rotor, gearbox and converters were done. Design of two generators was done and their performance was examined.
Centralized Motion Control of a Linear Tooth Belt Drive: Analysis of the Performance and Limitations
Resumo:
A centralized robust position control for an electrical driven tooth belt drive is designed in this doctoral thesis. Both a cascaded control structure and a PID based position controller are discussed. The performance and the limitations of the system are analyzed and design principles for the mechanical structure and the control design are given. These design principles are also suitable for most of the motion control applications, where mechanical resonance frequencies and control loop delays are present. One of the major challenges in the design of a controller for machinery applications is that the values of the parameters in the system model (parameter uncertainty) or the system model it self (non-parametric uncertainty) are seldom known accurately in advance. In this thesis a systematic analysis of the parameter uncertainty of the linear tooth beltdrive model is presented and the effect of the variation of a single parameter on the performance of the total system is shown. The total variation of the model parameters is taken into account in the control design phase using a Quantitative Feedback Theory (QFT). The thesis also introduces a new method to analyze reference feedforward controllers applying the QFT. The performance of the designed controllers is verified by experimentalmeasurements. The measurements confirm the control design principles that are given in this thesis.
Resumo:
This study focuses on the integration of eco-innovation principles into strategy and policy at the regional level. The importance of regions as a level for integrating eco-innovative programs and activities served as the point of interest for this study. Eco-innovative activities and technologies are seen as means to meet sustainable development objective of improving regions’ quality of life. This study is conducted to get an in-depth understanding and learning about eco-innovation at regional level, and to know the basic concepts that are important in integrating eco-innovation principles into regional policy. Other specific objectives of this study are to know how eco-innovation are developed and practiced in the regions of the EU, and to analyze the main characteristic features of an eco-innovation model that is specifically developed at Päijät-Häme Region in Finland. Paijät-Häme Region is noted for its successful eco-innovation strategies and programs, hence, taken as casework in this study. Both primary (interviews) and secondary data (publicly available documents) are utilized in this study. The study shows that eco-innovation plays an important role in regional strategy as reviewed based on the experience of other regions in the EU. This is because of its localized nature which makes it easier to facilitate in a regional setting. Since regional authorities and policy-makers are normally focused on solving its localized environmental problems, eco-innovation principles can easily be integrated into regional strategy. The case study highlights Päijät-Häme Region’s eco-innovation strategies and projects which are characterized by strong connection of knowledge-producing institutions. Policy instruments supporting eco-innovation (e.g. environmental technologies) are very much focused on clean technologies, hence, justifying the formation of cleantech clusters and business parks in Päijät-Häme Region. A newly conceptualized SAMPO model of eco-innovation has been developed in Päijät-Häme Region to better capture the region’s characteristics and to eventually replace the current model employed by the Päijät-Häme Regional Authority. The SAMPO model is still under construction, however, review of its principles points to some of its three important spearheads – practice-based innovation, design (eco-design) and clean technology or environmental technology (environment).
Resumo:
Over the recent years, development in mobile working machines has concentrated on reducing emissions owing to the tightening rules and needs to improve energy utilization and reduce power losses. This study focuses on energy utilization and regeneration in an electro-hydraulic forklift, which is a lifting equipment application. The study starts from the modelling and simulation of a hydraulic forklift. The energy regeneration from the potential energy of the load was studied. Also a flow-based electric motor speed control was suggested in this thesis instead of the throttle control method or the variable displacement pump control. Topics related to further development in the future are discussed. Finally, a summary and conclusions are presented.
Resumo:
In recent years the environmental issues and the energy saving have become increasingly import in modern society where industry is the major emission factor and energy consumer. Generally, most of the total energy consumption is caused by electrical drives used in industrial applications and thus improving the performance of electrical drives give an opportunity to improve the energy efficiency. In this Master Thesis improving the energy efficiency in different electrical drives is clarified with different cases: regenerative braking in the electric grid or recovery of the braking energy into an energy storage. In addition, as an example, the energy consumption of an elevator is analyzed by measurements. From these measurement results it can be estimated how much the share of the standby energy consumption is from the total energy consumption and how much regenerative energy is available. The latter part of the thesis concentrates on determination of the properties of lithium iron phosphate battery with measurements.
Resumo:
The aim of the thesis was to study quality management with process approach and to find out how to utilize process management to improve quality. The operating environment of organizations has changed. Organizations are focusing on their core competences and networking with suppliers and customers to ensure more effective and efficient value creation for the end customer. Quality management is moving from inspection of the output to prevention of problems from occurring in the first place and management thinking is changing from functional approach to process approach. In the theoretical part of the thesis, it is studied how to define quality, how to achieve good quality, how to improve quality, and how to make sure the improvement goes on as never ending cycle. A selection of quality tools is introduced. Process approach to quality management is described and compared to functional approach, which is the traditional way to manage operations and quality. The customer focus is also studied, and it is presented, that to ensure long term customer commitment, organization needs to react to changing customer requirements and wishes by constantly improving the processes. In the experimental part the theories are tested in a process improvement business case. It is shown how to execute a process improvement project starting from defining the customer requirements, continuing to defining the process ownership, roles and responsibilities, boundaries, interfaces and the actual process activities. The control points and measures are determined for the process, as well as the feedback and corrective action process, to ensure continual improvement can be achieved and to enable verification that customer requirements are fulfilled.
Resumo:
The objective of this master thesis is to test according to hoisting requirements, a servo drive system and compare its performance with the performance of a drive equipped with a vector controlled frequency converter. Both systems utilize closed-loop vector control based on PCL program control. In order to compare the results of tests both systems were connected to the same motor driving a variable speed electrical chain hoist. Tests were based on requirements to both systems. As requirements of tests zero speed operation, operation in field weakening, positioning accuracy and smoothness of motion are taken into consideration. Both systems demonstrate quite similar performance and meet the requirements. Servo drive system demonstrates a high positioning accuracy and dynamic performance. Frequency converter is not able to provide the same positioning accuracy and dynamic performance as servo drive.
Resumo:
The goal of this study is to create a new inventory valuation process for The Switch Drive Systems and to improve its inventory management practices. In the matter of inventories the main problems in the case company are that it doesn’t have consistent valuation methods throughout the company and that information received in ERP system isn’t trustful. The research is qualitative case study. The empirical data is gathered through observing and unstructured interviews. The research shows that material flow process and the inventory valuation must be divided and handled separately but they should interact with each other. The result is a new inventory valuation process which takes many factors of material process under the consideration in order to receive reliable value for inventories.
Resumo:
Fan systems are responsible for approximately 10% of the electricity consumption in industrial and municipal sectors, and it has been found that there is energy-saving potential in these systems. To this end, variable speed drives (VSDs) are used to enhance the efficiency of fan systems. Usually, fan system operation is optimized based on measurements of the system, but there are seldom readily installed meters in the system that can be used for the purpose. Thus, sensorless methods are needed for the optimization of fan system operation. In this thesis, methods for the fan operating point estimation with a variable speed drive are studied and discussed. These methods can be used for the energy efficient control of the fan system without additional measurements. The operation of these methods is validated by laboratory measurements and data from an industrial fan system. In addition to their energy consumption, condition monitoring of fan systems is a key issue as fans are an integral part of various production processes. Fan system condition monitoring is usually carried out with vibration measurements, which again increase the system complexity. However, variable speed drives can already be used for pumping system condition monitoring. Therefore, it would add to the usability of a variablespeed- driven fan system if the variable speed drive could be used as a condition monitoring device. In this thesis, sensorless detection methods for three lifetime-reducing phenomena are suggested: these are detection of the fan contamination build-up, the correct rotational direction, and the fan surge. The methods use the variable speed drive monitoring and control options for the detection along with simple signal processing methods, such as power spectrum density estimates. The methods have been validated by laboratory measurements. The key finding of this doctoral thesis is that a variable speed drive can be used on its own as a monitoring and control device for the fan system energy efficiency, and it can also be used in the detection of certain lifetime-reducing phenomena.
Resumo:
Today’s electrical machine technology allows increasing the wind turbine output power by an order of magnitude from the technology that existed only ten years ago. However, it is sometimes argued that high-power direct-drive wind turbine generators will prove to be of limited practical importance because of their relatively large size and weight. The limited space for the generator in a wind turbine application together with the growing use of wind energy pose a challenge for the design engineers who are trying to increase torque without making the generator larger. When it comes to high torque density, the limiting factor in every electrical machine is heat, and if the electrical machine parts exceed their maximum allowable continuous operating temperature, even for a short time, they can suffer permanent damage. Therefore, highly efficient thermal design or cooling methods is needed. One of the promising solutions to enhance heat transfer performances of high-power, low-speed electrical machines is the direct cooling of the windings. This doctoral dissertation proposes a rotor-surface-magnet synchronous generator with a fractional slot nonoverlapping stator winding made of hollow conductors, through which liquid coolant can be passed directly during the application of current in order to increase the convective heat transfer capabilities and reduce the generator mass. This doctoral dissertation focuses on the electromagnetic design of a liquid-cooled direct-drive permanent-magnet synchronous generator (LC DD-PMSG) for a directdrive wind turbine application. The analytical calculation of the magnetic field distribution is carried out with the ambition of fast and accurate predicting of the main dimensions of the machine and especially the thickness of the permanent magnets; the generator electromagnetic parameters as well as the design optimization. The focus is on the generator design with a fractional slot non-overlapping winding placed into open stator slots. This is an a priori selection to guarantee easy manufacturing of the LC winding. A thermal analysis of the LC DD-PMSG based on a lumped parameter thermal model takes place with the ambition of evaluating the generator thermal performance. The thermal model was adapted to take into account the uneven copper loss distribution resulting from the skin effect as well as the effect of temperature on the copper winding resistance and the thermophysical properties of the coolant. The developed lumpedparameter thermal model and the analytical calculation of the magnetic field distribution can both be integrated with the presented algorithm to optimize an LC DD-PMSG design. Based on an instrumented small prototype with liquid-cooled tooth-coils, the following targets have been achieved: experimental determination of the performance of the direct liquid cooling of the stator winding and validating the temperatures predicted by an analytical thermal model; proving the feasibility of manufacturing the liquid-cooled tooth-coil winding; moreover, demonstration of the objectives of the project to potential customers.
Resumo:
The aim of the present thesis was to explore possible promotional actions to support the emergence of eco-industrial business networks in Finland. The main objectives were to investigate what kind of factors affect in the development of eco-industrial networks and further make suggestions in what kinds of actions this could be supported. In addition, since the active facilitation was discovered as one potential promoting activity, further investigation about facilitation process in Finnish context was conducted and also main characteristics of nationwide facilitation programme were identified. This thesis contains literature review of network orchestration and eco-industrial networks. The latter consists of green supply chain management and industrial symbiosis, although the main focus of the study leans on the concept of industrial symbiosis. The empirical data of the study was obtained from semi-structured expert interviews. These interviews were analyzed using qualitative content analysis. The study identified four main promotional activities for eco-industrial networks: 1) building awareness, 2) incentives, 3) dismantling of legislative barriers and 4) active facilitation. In addition, a framework for facilitation activities in Finnish context was built and main characteristics of nationwide facilitation programme were identified.
Resumo:
Adaptive control systems are one of the most significant research directions of modern control theory. It is well known that every mechanical appliance’s behavior noticeably depends on environmental changes, functioning-mode parameter changes and changes in technical characteristics of internal functional devices. An adaptive controller involved in control process allows reducing an influence of such changes. In spite of this such type of control methods is applied seldom due to specifics of a controller designing. The work presented in this paper shows the design process of the adaptive controller built by Lyapunov’s function method for the Hydraulic Drive. The calculation needed and the modeling were conducting with MATLAB® software including Simulink® and Symbolic Math Toolbox™ etc. In the work there was applied the Jacobi matrix linearization of the object’s mathematical model and derivation of the suitable reference models based on Newton’s characteristic polynomial. The intelligent adaptive to nonlinearities algorithm for solving Lyapunov’s equation was developed. Developed algorithm works properly but considered plant is not met requirement of functioning with. The results showed confirmation that adaptive systems application significantly increases possibilities in use devices and might be used for correction a system’s behavior dynamics.
Resumo:
Thesis: A liquid-cooled, direct-drive, permanent-magnet, synchronous generator with helical, double-layer, non-overlapping windings formed from a copper conductor with a coaxial internal coolant conduit offers an excellent combination of attributes to reliably provide economic wind power for the coming generation of wind turbines with power ratings between 5 and 20MW. A generator based on the liquid-cooled architecture proposed here will be reliable and cost effective. Its smaller size and mass will reduce build, transport, and installation costs. Summary: Converting wind energy into electricity and transmitting it to an electrical power grid to supply consumers is a relatively new and rapidly developing method of electricity generation. In the most recent decade, the increase in wind energy’s share of overall energy production has been remarkable. Thousands of land-based and offshore wind turbines have been commissioned around the globe, and thousands more are being planned. The technologies have evolved rapidly and are continuing to evolve, and wind turbine sizes and power ratings are continually increasing. Many of the newer wind turbine designs feature drivetrains based on Direct-Drive, Permanent-Magnet, Synchronous Generators (DD-PMSGs). Being low-speed high-torque machines, the diameters of air-cooled DD-PMSGs become very large to generate higher levels of power. The largest direct-drive wind turbine generator in operation today, rated just below 8MW, is 12m in diameter and approximately 220 tonne. To generate higher powers, traditional DD-PMSGs would need to become extraordinarily large. A 15MW air-cooled direct-drive generator would be of colossal size and tremendous mass and no longer economically viable. One alternative to increasing diameter is instead to increase torque density. In a permanent magnet machine, this is best done by increasing the linear current density of the stator windings. However, greater linear current density results in more Joule heating, and the additional heat cannot be removed practically using a traditional air-cooling approach. Direct liquid cooling is more effective, and when applied directly to the stator windings, higher linear current densities can be sustained leading to substantial increases in torque density. The higher torque density, in turn, makes possible significant reductions in DD-PMSG size. Over the past five years, a multidisciplinary team of researchers has applied a holistic approach to explore the application of liquid cooling to permanent-magnet wind turbine generator design. The approach has considered wind energy markets and the economics of wind power, system reliability, electromagnetic behaviors and design, thermal design and performance, mechanical architecture and behaviors, and the performance modeling of installed wind turbines. This dissertation is based on seven publications that chronicle the work. The primary outcomes are the proposal of a novel generator architecture, a multidisciplinary set of analyses to predict the behaviors, and experimentation to demonstrate some of the key principles and validate the analyses. The proposed generator concept is a direct-drive, surface-magnet, synchronous generator with fractional-slot, duplex-helical, double-layer, non-overlapping windings formed from a copper conductor with a coaxial internal coolant conduit to accommodate liquid coolant flow. The novel liquid-cooling architecture is referred to as LC DD-PMSG. The first of the seven publications summarized in this dissertation discusses the technological and economic benefits and limitations of DD-PMSGs as applied to wind energy. The second publication addresses the long-term reliability of the proposed LC DD-PMSG design. Publication 3 examines the machine’s electromagnetic design, and Publication 4 introduces an optimization tool developed to quickly define basic machine parameters. The static and harmonic behaviors of the stator and rotor wheel structures are the subject of Publication 5. And finally, Publications 6 and 7 examine steady-state and transient thermal behaviors. There have been a number of ancillary concrete outcomes associated with the work including the following. X Intellectual Property (IP) for direct liquid cooling of stator windings via an embedded coaxial coolant conduit, IP for a lightweight wheel structure for lowspeed, high-torque electrical machinery, and IP for numerous other details of the LC DD-PMSG design X Analytical demonstrations of the equivalent reliability of the LC DD-PMSG; validated electromagnetic, thermal, structural, and dynamic prediction models; and an analytical demonstration of the superior partial load efficiency and annual energy output of an LC DD-PMSG design X A set of LC DD-PMSG design guidelines and an analytical tool to establish optimal geometries quickly and early on X Proposed 8 MW LC DD-PMSG concepts for both inner and outer rotor configurations Furthermore, three technologies introduced could be relevant across a broader spectrum of applications. 1) The cost optimization methodology developed as part of this work could be further improved to produce a simple tool to establish base geometries for various electromagnetic machine types. 2) The layered sheet-steel element construction technology used for the LC DD-PMSG stator and rotor wheel structures has potential for a wide range of applications. And finally, 3) the direct liquid-cooling technology could be beneficial in higher speed electromotive applications such as vehicular electric drives.
Resumo:
A direct-driven permanent magnet synchronous machine for a small urban use electric vehicle is presented. The measured performance of the machine at the test bench as well as the performance over the modified New European Drive Cycle will be given. The effect of optimal current components, maximizing the efficiency and taking into account the iron loss, is compared with the simple id=0 – control. The machine currents and losses during the drive cycle are calculated and compared with each other.