61 resultados para DOPED MATERIAL
Resumo:
Tämä diplomityö tehtiin osana Componenta Cast Componentsin kolmivuotista toimitusketjujen kehitysprojektia. Työn tavoitteena oli kuvata tyypillinen yrityksen sisäinen toimitusketjuprosessi ja tehdä alustava suorituskykyanalyysi valimon ja konepajan väliseen logistiseen prosessiin liittyen. Tarkoituksena oli myös löytää kehityskohteita materiaali- ja tietovirtojen hallinnassa näiden tuotantoyksiköiden välillä. Logistiikkaan, toimitusketjujen hallintaan ja toimitusketjun suorituskyvyn mittaamiseen liittyvän kirjallisuustutkimuksen sekä käytännön perusteella valittiin sopivat analyysimenetelmät. Näitä menetelmiä hyödynnettiin tilaustoimitus – prosessin kuvaamisessa sekä suorituskyvyn analysoinnissa yrityksen sisäisessä toimitusketjussa. Luonnollisena jatkona kehitettiin ja pantiin käytäntöön toimitusketjua synkronoiva imutyyppinen tuotannon- ja materiaalinohjausmenetelmä. Diplomityöprojektin aikana kehitettiin myös apuvälineet käyttöönotetun menetelmän asianmukaista hyödyntämistä varten. Diplomityöprojektissa otettiin ensimmäiset askeleet kohti integroitua sisäistä toimitusketjua. Uuden tuotannon- ja materiaalinohjausmenetelmän standardisointi muihin menetelmiin yhdistettynä, sekä toimitusketjun avainmittarien jatkokehitys on jo alkanut. Läpimenoaikoja lyhentämällä ja synkronoidun, läpinäkyvän kysyntä-tarjontaketjun avulla integroitumisen astetta voidaan nostaa edelleen. Poikkiorganisatorinen kehitys ja johtaminen toimitusketjussa on avainedellytys menestykseen.
Resumo:
Paperin ja kartongin kierrätys lisääntyy taloudellisten intressien ja ympäristöhygieenisten tavoitteiden takia jatkuvasti. Lisääntyvän kierrätyksen myötä myös paperin ja kartongin epäpuhtauksien määrä kasvaa, mikä huonontaa kierrätysraaka-aineen laatua. Tämän työn tarkoituksena on antaa perustietoa eräästä kartongin päällystyksessä käytettävästä hydrofobisesta materiaalista, epäpuhtaan kartongin kierrätyksestä sekä ongelmista, joita epäpuhtaan kartongin kierrätyksestä syntyy. Kierrätyskuidun fraktiointi on yksinkertainen prosessi aallotuskartongin, testilainerin ja taivekartongin valmistuksessa. Kierrätysprosessin ensisijaisia tehtäviä ovat kuidutus ja epäpuhtauksien poisto sekä näiden epäpuhtauksien vaikutusten eliminointi, jotta kierrätysmassan laatuvaatimukset täyttyvät. Lisääntynyt epäpuhtauksien määrä raaka-aineessa asettaa vaatimuksia lajitteluprosessin kehittämiseksi. Nykyaikaisilla kierrätyslaitoksilla ei pystytä käsittelemään ylettömiä määriä epäpuhtauksia. Epäpuhtaudet aiheuttavat ongelmia ajettavuuteen ja heikentävät tuotteen laatua kierrätysprosessissa. Epäpuhtauksien poistoon on olemassa useita teknisiä ratkaisuja, mutta minkään niistä ei ole todettu täysin poistavan kaikkia ongelmia. Työn kokeellisessa osassa kartongin päällystykseen käytettävää hydrofobista materiaalia analysoitiin erilaisin menetelmin. Tutkittiin myös erilaisten olosuhteiden vaikutusta tämän materiaalin poistoon.
Resumo:
A method for the analysis of high-speed solid-rotor induction motors in presented. The analysis is based on a new combination of the three dimensional linear method and the transfer matrix method. Both saturation and finite length effects are taken into account. The active region of the solid rotor is divided into saturated and unsaturated parts. The time dependence is assumed to be sinusoidal and phasor quantities are used in the solution. The method is applied to the calculation of smooth solid rotors manufactured of different materials. Six rotor materials are tested: three construction steels, pure iron, a cobaltiron alloy and an aluminium alloy. The results obtained by the method agree fairly well with the measurement quantities.
Resumo:
Fiber-reinforced composite as oral implant material: Experimental studies of glass fiber and bioactive glass in vitro and in vivo Department of Prosthetic Dentistry and Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland 2008. Biocompatibility and mechanical properties are important variables that need to be determined when new materials are considered for medical implants. Special emphasis was placed on these characteristics in the present work, which aimed to investigate the potential of fiber-reinforced composite (FRC) material as an oral implant. Furthermore, the purpose of this study was to explore the effect of bioactive glass (BAG) on osseointegration of FRC implants. The biocompatibility and mechanical properties of FRC implants were studied both in vitro and in vivo. The mechanical properties of the bulk FRC implant were tested with a cantilever bending test, torsional test and push-out test. The biocompatibility was first evaluated with osteoblast cells cultured on FRC substrates. Bone bonding was determined with the mechanical push-out test and histological as well as histomorplanimetric evaluation. Implant surface was characterized with SEM and EDS analysis. The results of these studies showed that FRC implants can withstand the static load values comparably to titanium. Threaded FRC implants had significantly higher push-out strength than the threaded titanium implants. Cell culture study revealed no cytotoxic effect of FRC materials on the osteoblast-like-cells. Addition of BAG particles enhanced cell proliferation and mineralization of the FRC substrates The in vivo study showed that FRC implants can withstand static loading until failure without fracture. The results also suggest that the FRC implant is biocompatible in bone. The biological behavior of FRC was comparable to that of titanium after 4 and 12 weeks of implantation. Furthermore, addition of BAG to FRC implant increases peri-implant osteogenesis and bone maturation.
Resumo:
The development of load-bearing osseous implant with desired mechanical and surface properties in order to promote incorporation with bone and to eliminate risk of bone resorption and implant failure is a very challenging task. Bone formation and resoption processes depend on the mechanical environment. Certain stress/strain conditions are required to promote new bone growth and to prevent bone mass loss. Conventional metallic implants with high stiffness carry most of the load and the surrounding bone becomes virtually unloaded and inactive. Fibre-reinforced composites offer an interesting alternative to metallic implants, because their mechanical properties can be tailored to be equal to those of bone, by the careful selection of matrix polymer, type of fibres, fibre volume fraction, orientation and length. Successful load transfer at bone-implant interface requires proper fixation between the bone and implant. One promising method to promote fixation is to prepare implants with porous surface. Bone ingrowth into porous surface structure stabilises the system and improves clinical success of the implant. The experimental part of this work was focused on polymethyl methacrylate (PMMA) -based composites with dense load-bearing core and porous surface. Three-dimensionally randomly orientated chopped glass fibres were used to reinforce the composite. A method to fabricate those composites was developed by a solvent treatment technique and some characterisations concerning the functionality of the surface structure were made in vitro and in vivo. Scanning electron microscope observations revealed that the pore size and interconnective porous architecture of the surface layer of the fibre-reinforced composite (FRC) could be optimal for bone ingrowth. Microhardness measurements showed that the solvent treatment did not have an effect on the mechanical properties of the load-bearing core. A push-out test, using dental stone as a bone model material, revealed that short glass fibre-reinforced porous surface layer is strong enough to carry load. Unreacted monomers can cause the chemical necrosis of the tissue, but the levels of leachable resisidual monomers were considerably lower than those found in chemically cured fibre-reinforced dentures and in modified acrylic bone cements. Animal experiments proved that surface porous FRC implant can enhance fixation between bone and FRC. New bone ingrowth into the pores was detected and strong interlocking between bone and the implant was achieved.
Resumo:
The transformation of a traditional pulp mill into an integrated forest biorefinery utilizing wood-derived biomass presents a promising opportunity for enterprise revival of the pulp and paper industry by offering new sources of revenue and significantly improved industry profitability. One proposed next generation process step for an integrated forest biorefinery is the extraction of hemicelluloses, allowing the co-production of pulp and ethanol or chemicals. The extraction of hemicelluloses, however, will likely have downstream effects on pulp quality. In the literature survey an overview of the integrated forest biorefinery and possible next generation technologies implementable in such facility were reviewed. Moreover, some hemicellulose extraction methods suitable for the co-production of pulp and hemicellulose products were looked into in more detail. Also, an overview on the significance of pulp’s hemicellulose content on papermaking properties of pulp fibers was made. In the literature it is stated that the hemicellulose content of pulp affects on many papermaking properties of pulp fibers, hornification and paper strength properties in particular. In the experimental part the goal was to investigate what effects alkaline hemicellulose extraction after bleaching has on the papermaking properties of birch Kraft pulp. It was discovered that tested pulps, normal and hemi-poor birch Kraft pulp, were different in many ways regarding to pulp properties. Differences were observed in both physical and chemical characteristics. Furthermore, clear distinctions were seen in tested paper properties, especially in strength properties, between the handsheets made from hemi-poor or normal birch Kraft pulp. Hemi-poor and normal birch Kraft pulps were also compared as a raw material of laboratory made copy paper. Based on this comparison, usage of hemi-poor birch pulp as the raw material of copy paper does not drastically deteriorate its quality.
Resumo:
This thesis is devoted to investigations of three typical representatives of the II-V diluted magnetic semiconductors, Zn1-xMnxAs2, (Zn1-xMnx)3As2 and p-CdSb:Ni. When this work started the family of the II-V semiconductors was presented by only the compounds belonging to the subgroup II3-V2, as (Zn1-xMnx)3As2, whereas the rest of the materials mentioned above were not investigated at all. Pronounced low-field magnetic irreversibility, accompanied with a ferromagnetic transition, are observed in Zn1-xMnxAs2 and (Zn1-xMnx)3As2 near 300 K. These features give evidence for presence of MnAs nanosize magnetic clusters, responsible for frustrated ground magnetic state. In addition, (Zn1-xMnx)3As2 demonstrates large paramagnetic response due to considerable amount of single Mn ions and small antiferromagnetic clusters. Similar paramagnetic system existing in Zn1-xMnxAs2 is much weaker. Distinct low-field magnetic irreversibility, accompanied with a rapid saturation of the magnetization with increasing magnetic field, is observed near the room temperature in p- CdSb:Ni, as well. Such behavior is connected to the frustrated magnetic state, determined by Ni-rich magnetic Ni1-xSbx nanoclusters. Their large non-sphericity and preferable orientations are responsible for strong anisotropy of the coercivity and saturation magnetization of p- CdSb:Ni. Parameters of the Ni1-xSbx nanoclusters are estimated. Low-temperature resistivity of p-CdSb:Ni is governed by a hopping mechanism of charge transfer. The variable-range hopping conductivity, observed in zero magnetic field, demonstrates a tendency of transformation into the nearest-neighbor hopping conductivity in non-zero magnetic filed. The Hall effect in p-CdSb:Ni exhibits presence of a positive normal and a negative anomalous contributions to the Hall resistivity. The normal Hall coefficient is governed mainly by holes activated into the valence band, whereas the anomalous Hall effect, attributable to the Ni1-xSbx nanoclusters with ferromagnetically ordered internal spins, exhibits a low-temperature power-law resistivity scaling.
Resumo:
Silica based biomaterials, such as melt-derived bioactive glasses and sol-gel glasses, have been used for a long time in bone healing applications because of their ability to form hydroxyapatite and to stimulate stem cell proliferation and differentiation. In this study, bone marrow derived cells were cultured with bioactive glass and sol-gel silica, and seeded into porous polymer composite scaffolds that were then implanted femorally and subcutaneously in rats to monitor their migration inside host tissue. Bone marrow derived cells were also injected intraperitoneally. Transplanted cells migrated to various tissues inside the host, including the lung, liver spleen, thymus and bone marrow. The method of transplantation affected the time frame of cell migration, with intraperitoneal injection being the fastest and femoral implantation the slowest, but not the target tissues of migration. Transplanted donor cells had a limited lifetime in the host and were later eliminated from all tested tissues. Bioactive glass, however, affected the implanted cells negatively. When it was present in the scaffold no donor cells were found in any of the tested host tissues. Bioactive glass S53P4 was found to support both osteoblastic and osteoclastic phenotype of bone marrow derived cells, but it was resistant to the resorbing effect of osteoclastic bone marrow derived cells, showing that bioactive glass is rather dissolved through physicochemical reactions than resorbed by cells. Fast-dissolving silica sol gel in microparticulate form was found to increase collagen formation by bone marrow derived cells, while slow dissolving silica microparticles enhanced their proliferation, suggesting that the dissolution rate of silica controls the response of bone marrow derived cells.
Resumo:
The aim of the present study was to demonstrate the wide applicability of the novel photoluminescent labels called upconverting phosphors (UCPs) in proximity-based bioanalytical assays. The exceptional features of the lanthanide-doped inorganic UCP compounds stem from their capability for photon upconversion resulting in anti-Stokes photoluminescence at visible wavelengths under near-infrared (NIR) excitation. Major limitations related to conventional photoluminescent labels are avoided, rendering the UCPs a competitive next-generation label technology. First, the background luminescence is minimized due to total elimination of autofluorescence. Consequently, improvements in detectability are expected. Second, at the long wavelengths (>600 nm) used for exciting and detecting the UCPs, the transmittance of sample matrixes is significantly greater in comparison with shorter wavelengths. Colored samples are no longer an obstacle to the luminescence measurement, and more flexibility is allowed even in homogeneous assay concepts, where the sample matrix remains present during the entire analysis procedure, including label detection. To transform a UCP particle into a biocompatible label suitable for bioanalytical assays, it must be colloidal in an aqueous environment and covered with biomolecules capable of recognizing the analyte molecule. At the beginning of this study, only UCP bulk material was available, and it was necessary to process the material to submicrometer-sized particles prior to use. Later, the ground UCPs, with irregular shape, wide size-distribution and heterogeneous luminescence properties, were substituted by a smaller-sized spherical UCP material. The surface functionalization of the UCPs was realized by producing a thin hydrophilic coating. Polymer adsorption on the UCP surface is a simple way to introduce functional groups for bioconjugation purposes, but possible stability issues encouraged us to optimize an optional silica-encapsulation method which produces a coating that is not detached in storage or assay conditions. An extremely thin monolayer around the UCPs was pursued due to their intended use as short-distance energy donors, and much attention was paid to controlling the thickness of the coating. The performance of the UCP technology was evaluated in three different homogeneous resonance energy transfer-based bioanalytical assays: a competitive ligand binding assay, a hybridization assay for nucleic acid detection and an enzyme activity assay. To complete the list, a competitive immunoassay has been published previously. Our systematic investigation showed that a nonradiative energy transfer mechanism is indeed involved, when a UCP and an acceptor fluorophore are brought into close proximity in aqueous suspension. This process is the basis for the above-mentioned homogeneous assays, in which the distance between the fluorescent species depends on a specific biomolecular binding event. According to the studies, the submicrometer-sized UCP labels allow versatile proximity-based bioanalysis with low detection limits (a low-nanomolar concentration for biotin, 0.01 U for benzonase enzyme, 0.35 nM for target DNA sequence).
Resumo:
Novel biomaterials are needed to fill the demand of tailored bone substitutes required by an ever‐expanding array of surgical procedures and techniques. Wood, a natural fiber composite, modified with heat treatment to alter its composition, may provide a novel approach to the further development of hierarchically structured biomaterials. The suitability of wood as a model biomaterial as well as the effects of heat treatment on the osteoconductivity of wood was studied by placing untreated and heat‐treated (at 220 C , 200 degrees and 140 degrees for 2 h) birch implants (size 4 x 7mm) into drill cavities in the distal femur of rabbits. The follow‐up period was 4, 8 and 20 weeks in all in vivo experiments. The flexural properties of wood as well as dimensional changes and hydroxyl apatite formation on the surface of wood (untreated, 140 degrees C and 200 degrees C heat‐treated wood) were tested using 3‐point bending and compression tests and immersion in simulated body fluid. The effect of premeasurement grinding and the effect of heat treatment on the surface roughness and contour of wood were tested with contact stylus and non‐contact profilometry. The effects of heat treatment of wood on its interactions with biological fluids was assessed using two different test media and real human blood in liquid penetration tests. The results of the in vivo experiments showed implanted wood to be well tolerated, with no implants rejected due to foreign body reactions. Heat treatment had significant effects on the biocompatibility of wood, allowing host bone to grow into tight contact with the implant, with occasional bone ingrowth into the channels of the wood implant. The results of the liquid immersion experiments showed hydroxyl apatite formation only in the most extensively heat‐treated wood specimens, which supported the results of the in vivo experiments. Parallel conclusions could be drawn based on the results of the liquid penetration test where human blood had the most favorable interaction with the most extensively heat‐treated wood of the compared materials (untreated, 140 degrees C and 200 degrees C heat‐treated wood). The increasing biocompatibility was inferred to result mainly from changes in the chemical composition of wood induced by the heat treatment, namely the altered arrangement and concentrations of functional chemical groups. However, the influence of microscopic changes in the cell walls, surface roughness and contour cannot be totally excluded. The heat treatment was hypothesized to produce a functional change in the liquid distribution within wood, which could have biological relevance. It was concluded that the highly evolved hierarchical anatomy of wood could yield information for the future development of bulk bone substitutes according to the ideology of bioinspiration. Furthermore, the results of the biomechanical tests established that heat treatment alters various biologically relevant mechanical properties of wood, thus expanding the possibilities of wood as a model material, which could include e.g. scaffold applications, bulk bone applications and serving as a tool for both mechanical testing and for further development of synthetic fiber reinforced composites.
Resumo:
This thesis is done as a part of project called FuncMama that is a project between Technical Research Centre of Finland (VTT), Oulu University (OY), Lappeenranta University of Technology (LUT) and Finnish industrial partners. Main goal of the project is to manufacture electric and mechanical components from mixed materials using laser sintering. Aim of this study was to create laser sintered pieces from ceramic material and monitor the sintering event by using spectrometer. Spectrometer is a device which is capable to record intensity of different wavelengths in relation with time. In this study the monitoring of laser sintering was captured with the equipment which consists of Ocean Optics spectrometer, optical fiber and optical lens (detector head). Light from the sintering process hit first to the lens system which guides the light in to the optical fibre. Optical fibre transmits the light from the sintering process to the spectrometer where wavelengths intensity level information is detected. The optical lens of the spectrometer was rigidly set and did not move along with the laser beam. Data which was collected with spectrometer from the laser sintering process was converted with Excel spreadsheet program for result’s evaluation. Laser equipment used was IPG Photonics pulse fibre laser. Laser parameters were kept mainly constant during experimental part and only sintering speed was changed. That way it was possible to find differences in the monitoring results without fear of too many parameters mixing together and affecting to the conclusions. Parts which were sintered had one layer and size of 5 x 5 mm. Material was CT2000 – tape manufactured by Heraeus which was later on post processed to powder. Monitoring of different sintering speeds was tested by using CT2000 reference powder. Moreover tests how different materials effect to the process monitoring were done by adding foreign powder Du Pont 951 which had suffered in re-grinding and which was more reactive than CT2000. By adding foreign material it simulates situation where two materials are accidently mixed together and it was studied if that can be seen with the spectrometer. It was concluded in this study that with the spectrometer it is possible to detect changes between different laser sintering speeds. When the sintering speed is lowered the intensity level of light is higher from the process. This is a result of higher temperature at the sintering spot and that can be noticed with the spectrometer. That indicates it could be possible to use spectrometer as a tool for process observation and support the idea of having system that can help setting up the process parameter window. Also important conclusion was how well the adding of foreign material could be seen with the spectrometer. When second material was added a significant intensity level raise could be noticed in that part where foreign material was mixed. That indicates it is possible to see if there are any variations in the material or if there are more materials mixed together. Spectrometric monitoring of laser sintering could be useful tool for process window observation and temperature controlling of the sintering process. For example if the process window for specific material is experimentally determined to get wanted properties and satisfying sintering speed. It is possible if the data is constantly recorded that the results can show faults in the part texture between layers. Changes between the monitoring data and the experimentally determined values can then indicate changes in the material being generated by material faults or by wrong process parameters. The results of this study show that spectrometer could be one possible tool for monitoring. But to get in that point where this all can be made possible much more researching is needed.
Resumo:
This thesis is devoted to growth and investigations of Mn-doped InSb and II-IV-As2 semiconductors, including Cd1-xZnxGeAs2:Mn, ZnSiAs2:Mn bulk crystals, ZnSiAs2:Mn/Si heterostructures. Bulk crystals were grown by direct melting of starting components followed by fast cooling. Mn-doped ZnSiAs2/Si heterostructures were grown by vacuum-thermal deposition of ZnAs2 and Mn layers on Si substrates followed by annealing. The compositional and structural properties of samples were investigated by different methods. The samples consist of micro- and nano- sizes clusters of an additional ferromagnetic Mn-X phases (X = Sb or As). Influence of magnetic precipitations on magnetic and electrical properties of the investigated materials was examined. With relatively high Mn concentration the main contribution to magnetization of samples is by MnSb or MnAs clusters. These clusters are responsible for high temperature behavior of magnetization and relatively high Curie temperature: up to 350 K for Mn-doped II-IV-As2 and about 600 K for InMnSb. The low-field magnetic properties of Mn-doped II-IV-As2 semiconductors and ZnSiAs2:Mn/Si heterostructures are connected to the nanosize MnAs particles. Also influence of nanosized MnSb clusters on low-field magnetic properties of InMnSb have been observed. The contribution of paramagnetic phase to magnetization rises at low temperatures or in samples with low Mn concentration. Source of this contribution is not only isolated Mn ions, but also small complexes, mainly dimmers and trimmers formed by Mn ions, substituting cation positions in crystal lattice. Resistivity, magnetoresistance and Hall resistivity properties in bulk Mn-doped II-IV-As2 and InSb crystals was analyzed. The interaction between delocalized holes and 3d shells of the Mn ions together with giant Zeeman splitting near the cluster interface are respond for negative magnetoresistance. Additionally to high temperature critical pointthe low-temperature ferromagnetic transition was observed Anomalous Hall effect was observed in Mn doped samples and analyzed for InMnSb. It was found that MnX clusters influence significantly on magnetic scattering of carriers.
Resumo:
Att övervaka förekomsten av giftiga komponenter i naturliga vattendrag är nödvändigt för människans välmående. Eftersom halten av föroreningar i naturens ekosystem bör hållas möjligast låg, pågår en ständig jakt efter kemiska analysmetoder med allt lägre detektionsgränser. I dagens läge görs miljöanalyser med dyr och sofistikerad instrumentering som kräver mycket underhåll. Jonselektiva elektroder har flera goda egenskaper som t.ex. bärbarhet, låg energiförbrukning, och dessutom är de relativt kostnadseffektiva. Att använda jonselektiva elektroder vid miljöanalyser är möjligt om deras känslighetsområde kan utvidgas genom att sänka deras detektionsgränser. För att sänka detektionsgränsen för Pb(II)-selektiva elektroder undersöktes olika typer av jonselektiva membran som baserades på polyakrylat-kopolymerer, PVC och PbS/Ag2S. Fast-fas elektroder med membran av PbS/Ag2S är i allmänhet enklare och mer robusta än konventionella elektroder vid spårämnesanalys av joniska föroreningar. Fast-fas elektrodernas detektionsgräns sänktes i detta arbete med en nyutvecklad galvanostatisk polariseringsmetod och de kunde sedan framgångsrikt användas för kvantitativa bestämningar av bly(II)-halter i miljöprov som hade samlats in i den finska skärgården nära tidigare industriområden. Analysresultaten som erhölls med jonselektiva elektroder bekräftades med andra analytiska metoder. Att sänka detektionsgränsen m.hj.a. den nyutvecklade polariseringsmetoden möjliggör bestämning av låga och ultra-låga blyhalter som inte kunde nås med klassisk potentiometri. Den verkliga fördelen med att använda dessa blyselektiva elektroder är möjligheten att utföra mätningar i obehandlade miljöprov trots närvaron av fasta partiklar vilket inte är möjligt att göra med andra analysmetoder. Jag väntar mig att den nyutvecklade polariseringsmetoden kommer att sätta en trend i spårämnesanalys med jonselektiva elektroder.
Resumo:
Många förbränningsanläggningar som bränner utmanande bränslen såsom restfraktioner och avfall råkar ut för problem med ökad korrosion på överhettare och/eller vattenväggar pga. komponenter i bränslena som är korrosiva. För att minimera problemen i avfallseldade pannor hålls ångparametrarna på en relativt låg nivå, vilket drastiskt minskar energiproduktionen. Beläggningarna i avfallseldade pannor består till största delen av element som är förknippade med högtemperaturkorrosion: Cl, S, alkalimetaller, främst K och Na, och tungmetaller som Pb och Zn, och det finns också indikationer av Br-förekomst. Det låga ångtrycket i avfallseldade pannor påverkar också stålrörens temperatur i pannväggarna i eldstaden. I dagens läge hålls temperaturen normalt vid 300-400 °C. Alkalikloridorsakad (KCl, NaCl) högtemperaturkorrosion har inte rapporterats vara relevant vid såpass låga temperaturer, men närvaro av Zn- och Pb-komponenter i beläggningarna har påvisats förorsaka ökad korrosion redan vid 300-400 °C. Vid förbränning kan Zn och Pb reagera med S och Cl och bilda klorider och sulfater i rökgaserna. Dessa tungmetallföreningar är speciellt problematiska pga. de bildar lågsmältande saltblandningar. Dessa lågsmältande gasformiga eller fasta föreningar följer rökgasen och kan sedan fastna eller kondensera på kallare ytor på pannväggar eller överhettare för att sedan bilda aggressiva beläggningar. Tungmetallrika (Pb, Zn) klorider och sulfater ökar risken för korrosion, och effekten förstärks ytterligare vid närvaro av smälta. Motivet med den här studien var att få en bättre insikt i högtemperaturkorrosion förorsakad av Zn och Pb, samt att undersöka och prediktera beteendet och motståndskraften hos några stålkvaliteter som används i överhettare och pannväggar i tungmetallrika förhållanden och höga materialtemperaturer. Omfattande laboratorie-, småskale- och fullskaletest utfördes. Resultaten kan direkt utnyttjas i praktiska applikationer, t.ex. vid materialval, eller vid utveckling av korrosionsmotverkande verktyg för att hitta initierande faktorer och förstå deras effekt på högtemperaturkorrosion.