46 resultados para Consumption of Rubber,


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study focuses to the intersection of three sets of activities in a company: expert work, development work and supply chain management, SCM. Experts and expert work represent a set of individuals whose efficiency and impact this study is intended to improve, while development work defines the set of organizational activities to focus on. SCM as an expertise area acts as the platform on which this study is built. The study has two aims. Firstly, it aims to derive a model helping an SCM expert to increase the effectiveness of expert work in development tasks by understanding the encountered organizational situations and processes better, reflecting his/her past and future actions to organizational processes and selecting and adjusting the processes and contents of his/her work accordingly. Secondly, it aims to develop applicable approaches and methods to understand, evaluate and manage the organizational processes and situations in development work. The integrative model on approaches and methods to improve the effectiveness of development processes is split to two aggregate dimensions: technical performance of the developed solution and consumption of resources of the development process. Six potential approaches and methods aiming at helping in the management of organizational dimensions are presented in enclosed publications. The approaches focus on three subtasks of development work: decision making, implementation and change, and knowledge accumulation. The approaches and methods have been tested in case studies representing typical development processes in the area of supply chain management. As a result, four suggestions are presented. Firstly, SCM experts are advised to consider the SCM development work to be consisting of development processes. Secondly, inside these processes they should identify and evaluate the risk of difficult decision-making related to organizational factors. Thirdly, they are prompted for an active role in implementation and change, supporting the implementation through whole process. Finally, the development should be seen in a holistic view, taking into account the stage of knowledge and organizational issues related to it, and adopt a knowledge development strategy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fine powders of minerals are used commonly in the paper and paint industry, and for ceramics. Research for utilizing of different waste materials in these applications is environmentally important. In this work, the ultrafine grinding of two waste gypsum materials, namely FGD (Flue Gas Desulphurisation) gypsum and phosphogypsum from a phosphoric acid plant, with the attrition bead mill and with the jet mill has been studied. The ' objective of this research was to test the suitability of the attrition bead mill and of the jet mill to produce gypsum powders with a particle size of a few microns. The grinding conditions were optimised by studying the influences of different operational grinding parameters on the grinding rate and on the energy consumption of the process in order to achieve a product fineness such as that required in the paper industry with as low energy consumption as possible. Based on experimental results, the most influential parameters in the attrition grinding were found to be the bead size, the stirrer type, and the stirring speed. The best conditions, based on the product fineness and specific energy consumption of grinding, for the attrition grinding process is to grind the material with small grinding beads and a high rotational speed of the stirrer. Also, by using some suitable grinding additive, a finer product is achieved with a lower energy consumption. In jet mill grinding the most influential parameters were the feed rate, the volumetric flow rate of the grinding air, and the height of the internal classification tube. The optimised condition for the jet is to grind with a small feed rate and with a large rate of volumetric flow rate of grinding air when the inside tube is low. The finer product with a larger rate of production was achieved with the attrition bead mill than with the jet mill, thus the attrition grinding is better for the ultrafine grinding of gypsum than the jet grinding. Finally the suitability of the population balance model for simulation of grinding processes has been studied with different S , B , and C functions. A new S function for the modelling of an attrition mill and a new C function for the modelling of a jet mill were developed. The suitability of the selected models with the developed grinding functions was tested by curve fitting the particle size distributions of the grinding products and then comparing the fitted size distributions to the measured particle sizes. According to the simulation results, the models are suitable for the estimation and simulation of the studied grinding processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study considered the current situation of solid and liquid biomass fuels in Finland. The fact that industry consumes more than half of the total primary energy, widely applied combined heat and power production and a high share of solid biomass fuels in the total energy consumption are specific to the Finnish energy system. Wood is the most important source of bioenergy in Finland, representing 20% of the total energy consumption in 2007. Almost 80% of the woodbased energy is recovered from industrial by-products and residues. As a member of the European Union, Finland has committed itself to the Union’s climate and energy targets, such as reducing its overall emissions of green house gases to at least 20% below 1990 levels by 2020, and increasing the share of renewable energy in the gross final consumption. The renewable energy target approved for Finland is 38%. The present National Climate and Energy Strategy was introduced in November 2008. The strategy covers climate and energy policy measures up to 2020, and in brief thereafter, up to 2050. In recent years, the actual emissions have exceeded the Kyoto commitment and the trend of emissions is on the increase. In 2007, the share of renewable energy in the gross final energy consumption was approximately 25% (360 PJ). Without new energy policy measures, the final consumption of renewable energy would increase to 380 PJ, which would be approximately only 31% of the final energy consumption. In addition, green house gas emissions would exceed the 1990 levels by 20%. Meeting the targets will need the adoption of more active energy policy measures in coming years. The international trade of biomass fuels has a substantial importance for the utilisation of bioenergy in Finland. In 2007, the total international trading of solid and liquid biomass fuels was approximately 77 PJ, of which import was 62 PJ. Most of the import is indirect and takes place within the forest industry’s raw wood imports. In 2007, as much as 21% of wood energy was based on foreign-origin wood. Wood pellets and tall oil form the majority of export streams of biomass fuels. The indirect import of wood fuels peaked in 2006 to 61 PJ. The foreseeable decline in raw wood import to Finland will decrease the indirect import of wood fuels. In 2004– 2007, the direct trade of solid and liquid biomass fuels has been on a moderate growth path. In 2007, the import of palm oil and export of bio-diesel emerged, as a large, 170 000 t/yr biodiesel plant came into operation in Porvoo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main objective of this thesis was to compare the efficiency of counter-current and co-current filter cake washing techniques. Filter cake washing is a common unit operation which is used in the chemical process industry for improving the recovery of the liquid phase or for purifying the solid phase of the filter cake. Counter-current displacement washing is more difficult to arrange and it requires additional process equipment but the advantage of counter-current method is that the consumption of wash water that is required for achieving certain filter cake purity may be considerably decreased when compared to the co-current washing method. This is true especially for materials that are difficult to wash. The literature part of this thesis consists of a review of filter cake washing in general, including the basic principles of co-current and counter-current techniques, and a description of the structure and operation of a horizontal vacuum belt filter, which is the equipment considered in the experimental part of this thesis. Also the most common cake washing models are introduced. The experiments were performed by washing wheat apatite filter cakes in a laboratory scale vacuum filter by using both co-current and counter-current washing methods. The main results of these tests were the washing curves that relate the purity of the filter cake to the amount of wash liquid used. Comparison between the obtained washing curves showed that both washing methods could be efficiently applied for achieving good washing results. The differences between the wash liquid consumptions in the co-current and counter-current washing methods were found to be surprisingly small but this is most probably explained by the relatively good washing characteristics of the apatite cakes. The washing models introduced in the literature part were compared with the results obtained from the experiments and it was found out that the studied cake washing processes could be described

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this thesis was to investigate the compression of filter cakes at high filtration pressures with five different test materials and to compare the energy consumption of high pressure compression with the energy consumption of thermal drying. The secondary target of this study was to investigate the particle deformation of test materials during filtration and compression. Literature part consists of basic theory of filtration and compression and of the basic parameters that influence the filtration process. There is also a brief description about all of the test materials including their properties and their industrial production and processing. Theoretical equations for calculating the energy consumptions of the filtrations at different conditions are also presented. At the beginning of the experiments at experimental part, the basic filtration tests were done with all the five test materials. Filtration tests were made at eight different pressures, from 6 bars up to 100 bars, by using piston press pressure filter. Filtration tests were then repeated by using a cylinder with smaller slurry volume than in the first series of filtration tests. Separate filtration tests were also done for investigating the deformation of solid particles during filtration and for finding the optimal curve for raising the filtration pressure. Energy consumption differences between high pressure filtration and ideal thermal drying process were done partly experimentally and partly by using theoretical calculation equations. By comparing these two water removal methods, the optimal ranges for their use were found considering their energy efficiency. The results of the measurements shows that the filtration rate increased and the moisture content of the filter cakes decreased as the filtration pressure was increased. Also the porosity of the filter cakes mainly decreased when the filtration pressure was increased. Particle deformation during the filtration was observed only with coal particles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The design methods and languages targeted to modern System-on-Chip designs are facing tremendous pressure of the ever-increasing complexity, power, and speed requirements. To estimate any of these three metrics, there is a trade-off between accuracy and abstraction level of detail in which a system under design is analyzed. The more detailed the description, the more accurate the simulation will be, but, on the other hand, the more time consuming it will be. Moreover, a designer wants to make decisions as early as possible in the design flow to avoid costly design backtracking. To answer the challenges posed upon System-on-chip designs, this thesis introduces a formal, power aware framework, its development methods, and methods to constraint and analyze power consumption of the system under design. This thesis discusses on power analysis of synchronous and asynchronous systems not forgetting the communication aspects of these systems. The presented framework is built upon the Timed Action System formalism, which offer an environment to analyze and constraint the functional and temporal behavior of the system at high abstraction level. Furthermore, due to the complexity of System-on-Chip designs, the possibility to abstract unnecessary implementation details at higher abstraction levels is an essential part of the introduced design framework. With the encapsulation and abstraction techniques incorporated with the procedure based communication allows a designer to use the presented power aware framework in modeling these large scale systems. The introduced techniques also enable one to subdivide the development of communication and computation into own tasks. This property is taken into account in the power analysis part as well. Furthermore, the presented framework is developed in a way that it can be used throughout the design project. In other words, a designer is able to model and analyze systems from an abstract specification down to an implementable specification.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Characterizing Propionibacterium freudenreichii ssp. shermanii JS and Lactobacillus rhamnosus LC705 as a new probiotic combination: basic properties of JS and pilot in vivo assessment of the combination Each candidate probiotic strain has to have the documentation for the proper identification with current molecular tools, for the biological properties, for the safety aspects and for the health benefits in human trials if the intention is to apply the strain as health promoting culture in the commercial applications. No generalization based on species properties of an existing probiotic are valid for any novel strain, as strain specific differences appear e.g. in the resistance to GI tract conditions and in health promoting benefits (Madsen, 2006). The strain evaluation based on individual strain specific probiotic characteristics is therefore the first key action for the selection of the new probiotic candidate. The ultimate goal in the selection of the probiotic strain is to provide adequate amounts of active, living cells for the application and to guarantee that the cells are physiologically strong enough to survive and be biologically active in the adverse environmental conditions in the product and in GI tract of the host. The in vivo intervention studies are expensive and time consuming; therefore it is not rational to test all the possible candidates in vivo. Thus, the proper in vitro studies are helping to eliminate strains which are unlikely to perform well in vivo. The aims of this study were to characterize the strains of Propionibacterium freudenreichii ssp. shermanii JS and Lactobacillus rhamnosus LC705, both used for decades as cheese starter cultures, for their technological and possible probiotic functionality applied in a combined culture. The in vitro studies of Propionibacterium freudenreichii ssp. shermanii JS focused on the monitoring of the viability rates during the acid and bile treatments and on the safety aspects such as antibiotic susceptibility and adhesion. The studies with the combination of the strains JS and LC705 administered in fruit juices monitored the survival of the strains JS and LC705 during the GI transit and their effect on gut wellbeing properties measured as relief of constipation. In addition, safety parameters such as side effects and some peripheral immune parameters were assessed. Separately, the combination of P. freudenreichii ssp. shermanii JS and Lactobacillus rhamnosus LC705 was evaluated from the technological point of view as a bioprotective culture in fermented foods and wheat bread applications. In this study, the role ofP. freudenreichii ssp. shermanii JS as a candidate probiotic culture alone and in a combination with L. rhamnosus LC705 was demonstrated. Both strains were transiently recovered in high numbers in fecal samples of healthy adults during the consumption period. The good survival through the GI transit was proven for both strains with a recovery rate from 70 to 80% for the JS strain and from 40 to 60% for the LC705 strain from the daily dose of 10 log10 CFU. The good survival was shown from the consumption of fruit juices which do not provide similar matrix protection for the cells as milk based products. The strain JS did not pose

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A healthy and balanced diet can reduce health problems, such as overweight and metabolic syndrome. In general, people have a considerably good knowledge of what constitutes a healthy diet and how they could achieve it with their food choices. Besides, people argue that health is among their top five food choice motives. Nevertheless, the prevalence of overweight is increasing and other food choice motives, such as taste, seem to conflict with the health. Liking for food does not necessarily determine acceptance alone, thus several non-sensory factors, such as brand, country of origin and nutrition claim, can also influence. Moreover, consumers are individuals in how they prioritize sensory and nonsensory factors of foods, but e.g. increasing age, female gender and health concern have been connected to a more health-oriented dietary behaviour. To sum up, identifying different factors that can increase the liking and consumption of healthy food is essential in order to develop more attractive healthful food products. Adding vitamins, minerals, fibre or other ingredients to a food product can be used to enrich the nutritional quality of the products. However, this may be difficult in practice as regards the sensory quality and pleasantness of the foods. Generally, consumers are not willing to compromise on taste in food. On the other hand, consumers are very heterogeneous in their likings, and their personal values and attitudes may interact with preferences for specific sensory characteristics. The aims of this study were to investigate the effects of intrinsic product characteristics on sensory properties and hedonic responses; to determine the impact of few non-sensory factors; and to examine the interaction between sensory and non-sensory factors with consumers’ demographics, values and attitudes in liking of healthy model foods. The results showed that product composition influenced sensory quality and had an effect on hedonic responses. Adding flaxseed to bakery products showed a significant improvement in the nutritional quality without negative effects on sensory properties. On the other hand, the fortification of wellness beverages with vitamins and minerals may impart off-flavours. In general, sweetness of yoghurts, freshness of wellness beverages and low intensity of rye bread flavour appealed to consumers. Information about the domestic origin of yoghurts and claiming a specific function for wellness beverages enhanced liking. However, consumers who were more concerned about their health and considered natural content as an important food choice motive, rated sourer and less sweet yoghurts and wellness beverages as more pleasant. In addition, interest in health increased the consumption of rye breads and other whole grain breads among adolescents. The results showed that the optimal product quality in terms of intrinsic and extrinsic factors differs between individual consumers, and personal values and food choice motives can be connected to preferences for specific sensory characteristics of foods. This indicates that each food product needs to be considered in relation to its specific market niche, and to which segment of consumer will respond most positively to its characteristics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A distinctive design feature of steam boiler with natural circulation is the presence of the steam drum which plays a role of the separator of vapor from the flow of water-and-steam mixture coming into steam drum from the furnace tubes. Steam drum with unheated downcomer tubes, deducing from it, and riser (screen/furnace tubes) inside the furnace is a closed circulation loop in which movement of water (downcomer tubes) and water-and-steam mixture (riser tubes) is organized. The movement of the working fluid is appears due to occurrence of the natural pressure, determined by the difference in hydrostatic pressure and the mass of water and water-and-steam mixtures in downcomer and riser tubes and called the driving pressure of the natural circulation: S drive = H steam (ρ down + ρ mix) g where: ρ down - density of water in downcomer tubes; ρ mix - density of water in riser tubes; H steam - height of steam content section; g - acceleration of gravity. In steam boilers with natural circulation the circulation rate is usually between 10 and 30. Thus, consumption of water in the circulation circuit “circulation rate times” more than steam output of the boiler. There are two aspects of the design of natural water circulation loops. One is to ensure a sufficient mass flux of circulating water to avoid burnout of evaporator tubes. The other is to avoid tube wall temperature fluctuation and tube vibration due to oscillation of circulation velocity. The design criteria are therefore reduced, in principle, to those of critical heat flux, critical flow rate for burnout, and flow instability. In practical design, however, the circulation velocity and the void fraction at the evaporator tube outlet are used as the design criteria (Seikan I., et. al., 1999). This study has been made with assumption that the heat flux in the furnace of the boiler even all the time. The target of the study was to define the circulation rate of the boiler, thus average heat flux do not change it. I would like to acknowledge professionals from “Foster Wheeler” company for good and comfortable cooperation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The first objective of this study was to find out reliable laboratory methods to predict the effect of enzymes on specific energy consumption and fiber properties of TMP pulp. The second one was to find with interactive software called “Knowledge discovery in databases” enzymes or other additives that can be used in finding a solution to reduce energy consumption of TMP pulp. The chemical composition of wood and enzymes, which have activity on main wood components were presented in the literature part of the work. The results of previous research in energy reduction of TMP process with enzymes were also highlighted. The main principles of knowledge discovery have been included in literature part too. The experimental part of the work contains the methods description in which the standard size chip, crushed chip and fiberized spruce chip (fiberized pulp) were used. Different types of enzymatic treatment with different dosages and time were tested during the experiments and showed. Pectinase, endoglucanase and mixture of enzymes were used for evaluation of method reliability. The fines content and fiber length of pulp was measured and used as evidence of enzymes' effect. The refining method with “Bauer” laboratory disc refiner was evaluated as not highly reliable. It was not able to provide high repeatability of results, because of uncontrolled feeding capacity and refining consistency. The refining method with Valley refiner did not have a lot of variables and showed stable and repeatable results in energy saving. The results of experiments showed that efficient enzymes impregnation is probably the main target with enzymes application for energy saving. During the work the fiberized pulp showed high accessibility to enzymatic treatment and liquid penetration without special impregnating equipment. The reason was that fiberized pulp has larger wood surface area and thereby the contact area between the enzymatic solution and wood is also larger. Standard size chip and crushed chip treatment without special impregnator of enzymatic solution was evaluated as not efficient and did not show visible, repeatable results in energy consumption decrease. Thereby it was concluded that using of fiberized pulp and Valley refiner for measurements of enzymes' effectiveness in SEC decrease is more suitable than normal size chip and crushed chip with “Bauer” refiner. Endoglucanase with 5 kg/t dosage showed about 20% energy consumption decrease. Mixture of enzymes with 1.5 kg/t dosage showed about 15% decrease of energy consumption during the refining. Pectinase at different dosages and treatment times did not show significant effect on energy consumption. Results of knowledge discovery in databases showed the xylanase, cellulase and pectinase blend as most promising for energy reduction in TMP process. Surfactants were determined as effective additives for energy saving with enzymes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The potential for enhancing the energy efficiency of industrial pumping processes is estimated to be in some cases up to 50 %. One way to define further this potential is to implement techniques in accordance to definition of best available techniques in pumping applications. These techniques are divided into three main categories: Design, control method & maintenance and distribution system. In the theory part of this thesis first the definition of best available techniques (BAT) and its applicability on pumping processes is issued. Next, the theory around pumping with different pump types is handled, the main stress being in centrifugal pumps. Other components needed in a pumping process are dealt by presenting different control methods, use of an electric motor, variable speed drive and the distribution system. Last part of the theory is about industrial pumping processes from water distribution, sewage water and power plant applications, some of which are used further on in the empirical part as example cases. For the empirical part of this study four case studies on typical pumping processes from older Master’s these were selected. Firstly the original results were analyzed by studying the distribution of energy consumption between different system components and using the definition of BAT in pumping, possible ways to improve energy efficiency were evaluated. The goal in this study was that by the achieved results it would be possible to identify the characteristic energy consumption of these and similar pumping processes. Through this data it would then be easier to focus energy efficiency actions where they might be the most applicable, both technically and economically.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The consumption of manganese is increasing, but huge amounts of manganese still end up in waste in hydrometallurgical processes. The recovery of manganese from multi-metal solutions at low concentrations may not be economical. In addition, poor iron control typically prevents the production of high purity manganese. Separation of iron from manganese can be done with chemical precipitation or solvent extraction methods. Combined carbonate precipitation with air oxidation is a feasible method to separate iron and manganese due to the fast kinetics, good controllability and economical reagents. In addition the leaching of manganese carbonate is easier and less acid consuming than that of hydroxide or sulfide precipitates. Selective iron removal with great efficiency from MnSO4 solution is achieved by combined oxygen or air oxidation and CaCO3 precipitation at pH > 5.8 and at a redox potential of > 200 mV. In order to avoid gypsum formation, soda ash should be used instead of limestone. In such case, however, extra attention needs to be paid on the reagents mole ratios in order to avoid manganese coprecipitation. After iron removal, pure MnSO4 solution was obtained by solvent extraction using organophosphorus reagents, di-(2-ethylhexyl)phosphoric acid (D2EHPA) and bis(2,4,4- trimethylpentyl)phosphinic acid (CYANEX 272). The Mn/Ca and Mn/Mg selectivities can be increased by decreasing the temperature from the commonly used temperatures (40 –60oC) to 5oC. The extraction order of D2EHPA (Ca before Mn) at low temperature remains unchanged but the lowering of temperature causes an increase in viscosity and slower phase separation. Of these regents, CYANEX 272 is selective for Mn over Ca and, therefore, it would be the better choice if there is Ca present in solution. A three-stage Mn extraction followed by a two-stage scrubbing and two-stage sulfuric acid stripping is an effective method of producing a very pure MnSO4 intermediate solution for further processing. From the intermediate MnSO4 some special Mn- products for ion exchange applications were synthesized and studied. Three types of octahedrally coordinated manganese oxide materials as an alternative final product for manganese were chosen for synthesis: layer structured Nabirnessite, tunnel structured Mg-todorokite and K-kryptomelane. As an alternative source of pure MnSO4 intermediate, kryptomelane was synthesized by using a synthetic hydrometallurgical tailings. The results show that the studied OMS materials adsorb selectively Cu, Ni, Cd and K in the presence of Ca and Mg. It was also found that the exchange rates were reasonably high due to the small particle dimensions. Materials are stable in the studied conditions and their maximum Cu uptake capacity was 1.3 mmol/g. Competitive uptake of metals and acid was studied using equilibrium, batch kinetic and fixed-bed measurements. The experimental data was correlated with a dynamic model, which also accounts for the dissolution of the framework manganese. Manganese oxide micro-crystals were also bound onto silica to prepare a composite material having a particle size large enough to be used in column separation experiments. The MnOx/SiO2 ratio was found to affect significantly the properties of the composite. The higher the ratio, the lower is the specific surface area, the pore volume and the pore size. On the other hand, higher amount of silica binder gives composites better mechanical properties. Birnesite and todorokite can be aggregated successfully with colloidal silica at pH 4 and with MnO2/SiO2 weight ratio of 0.7. The best gelation and drying temperature was 110oC and sufficiently strong composites were obtained by additional heat-treatment at 250oC for 2 h. The results show that silica–supported MnO2 materials can be utilized to separate copper from nickel and cadmium. The behavior of the composites can be explained reasonably well with the presented model and the parameters estimated from the data of the unsupported oxides. The metal uptake capacities of the prepared materials were quite small. For example, the final copper loading was 0.14 mmol/gMnO2. According to the results the special MnO2 materials are potential for a specific environmental application to uptake harmful metal ions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As technology geometries have shrunk to the deep submicron regime, the communication delay and power consumption of global interconnections in high performance Multi- Processor Systems-on-Chip (MPSoCs) are becoming a major bottleneck. The Network-on- Chip (NoC) architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication issues such as performance limitations of long interconnects and integration of large number of Processing Elements (PEs) on a chip. The choice of routing protocol and NoC structure can have a significant impact on performance and power consumption in on-chip networks. In addition, building a high performance, area and energy efficient on-chip network for multicore architectures requires a novel on-chip router allowing a larger network to be integrated on a single die with reduced power consumption. On top of that, network interfaces are employed to decouple computation resources from communication resources, to provide the synchronization between them, and to achieve backward compatibility with existing IP cores. Three adaptive routing algorithms are presented as a part of this thesis. The first presented routing protocol is a congestion-aware adaptive routing algorithm for 2D mesh NoCs which does not support multicast (one-to-many) traffic while the other two protocols are adaptive routing models supporting both unicast (one-to-one) and multicast traffic. A streamlined on-chip router architecture is also presented for avoiding congested areas in 2D mesh NoCs via employing efficient input and output selection. The output selection utilizes an adaptive routing algorithm based on the congestion condition of neighboring routers while the input selection allows packets to be serviced from each input port according to its congestion level. Moreover, in order to increase memory parallelism and bring compatibility with existing IP cores in network-based multiprocessor architectures, adaptive network interface architectures are presented to use multiple SDRAMs which can be accessed simultaneously. In addition, a smart memory controller is integrated in the adaptive network interface to improve the memory utilization and reduce both memory and network latencies. Three Dimensional Integrated Circuits (3D ICs) have been emerging as a viable candidate to achieve better performance and package density as compared to traditional 2D ICs. In addition, combining the benefits of 3D IC and NoC schemes provides a significant performance gain for 3D architectures. In recent years, inter-layer communication across multiple stacked layers (vertical channel) has attracted a lot of interest. In this thesis, a novel adaptive pipeline bus structure is proposed for inter-layer communication to improve the performance by reducing the delay and complexity of traditional bus arbitration. In addition, two mesh-based topologies for 3D architectures are also introduced to mitigate the inter-layer footprint and power dissipation on each layer with a small performance penalty.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Approximately a quarter of electrical power consumption in pulp and paper industry is used in different pumping systems. Therefore, improving pumping system efficiency is a considerable way to reduce energy consumption in different processes. Pumping of wood pulp in different consistencies is common in pulp and paper industry. Earlier, centrifugal pumps were used to pump pulp only at low consistencies, but development of MC technology has made it possible to pump medium consistency pulp. Pulp is a non-Newtonian fluid, which flow characteristics are significantly different than what of water. In this thesis is examined the energy efficiency of pumping medium consistency pulp with centrifugal pump. The factors effecting the pumping of MC pulp are presented and through case study is examined the energy efficiency of pumping in practice. With data obtained from the case study are evaluated the effects of pump rotational speed and pulp consistency on energy efficiency. Additionally, losses caused by control valve and validity of affinity laws in pulp pumping are evaluated. The results of this study can be used for demonstrating the energy consumption of MC pumping processes and finding ways to improve energy efficiency in these processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Solid processes are used for obtaining the valuable minerals. Due to their worth, it is obligatory to perform different experiments to determine the different values of these minerals. With the passage of time, it is becoming more difficult to carry out these experiments for each mineral for different characteristics due to high labor costs and consumption of time. Therefore, scientists and engineers have tried to overcome this issue. They made different software to handle this problem. Aspen is one of those software for the calculation of different parameters. Therefore, the aim of this report was to do simulation for solid processes to observe different effect for minerals. Different solid processes like crushing, screening; filtration and crystallization were simulated by Aspen Plus. The simulation results are obtained by using this simulation software and they are described in this thesis. It was noticed that the results were acceptable for all solid processes. Therefore, this software can be used for the designing of crushers by calculating the power consumption of crushers, can design the filter and for the calculation of material balance for all processes.