27 resultados para Computer vision teaching


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The large and growing number of digital images is making manual image search laborious. Only a fraction of the images contain metadata that can be used to search for a particular type of image. Thus, the main research question of this thesis is whether it is possible to learn visual object categories directly from images. Computers process images as long lists of pixels that do not have a clear connection to high-level semantics which could be used in the image search. There are various methods introduced in the literature to extract low-level image features and also approaches to connect these low-level features with high-level semantics. One of these approaches is called Bag-of-Features which is studied in the thesis. In the Bag-of-Features approach, the images are described using a visual codebook. The codebook is built from the descriptions of the image patches using clustering. The images are described by matching descriptions of image patches with the visual codebook and computing the number of matches for each code. In this thesis, unsupervised visual object categorisation using the Bag-of-Features approach is studied. The goal is to find groups of similar images, e.g., images that contain an object from the same category. The standard Bag-of-Features approach is improved by using spatial information and visual saliency. It was found that the performance of the visual object categorisation can be improved by using spatial information of local features to verify the matches. However, this process is computationally heavy, and thus, the number of images must be limited in the spatial matching, for example, by using the Bag-of-Features method as in this study. Different approaches for saliency detection are studied and a new method based on the Hessian-Affine local feature detector is proposed. The new method achieves comparable results with current state-of-the-art. The visual object categorisation performance was improved by using foreground segmentation based on saliency information, especially when the background could be considered as clutter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Visual object tracking has been one of the most popular research topics in the field of computer vision recently. Specifically, hand tracking has attracted significant attention since it would enable many useful practical applications. However, hand tracking is still a very challenging problem which cannot be considered solved. The fact that almost every aspect of hand appearance can change is the fundamental reason for this difficulty. This thesis focused on 2D-based hand tracking in high-speed camera videos. During the project, a toolbox for this purpose was collected which contains nine different tracking methods. In the experiments, these methods were tested and compared against each other with both high-speed videos recorded during the project and publicly available normal speed videos. The results revealed that tracking accuracies varied considerably depending on the video and the method. Therefore, no single method was clearly the best in all videos, but three methods, CT, HT, and TLD, performed better than the others overall. Moreover, the results provide insights about the suitability of each method to different types and situations of hand tracking.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The recent emergence of low-cost RGB-D sensors has brought new opportunities for robotics by providing affordable devices that can provide synchronized images with both color and depth information. In this thesis, recent work on pose estimation utilizing RGBD sensors is reviewed. Also, a pose recognition system for rigid objects using RGB-D data is implemented. The implementation uses half-edge primitives extracted from the RGB-D images for pose estimation. The system is based on the probabilistic object representation framework by Detry et al., which utilizes Nonparametric Belief Propagation for pose inference. Experiments are performed on household objects to evaluate the performance and robustness of the system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The usage of digital content, such as video clips and images, has increased dramatically during the last decade. Local image features have been applied increasingly in various image and video retrieval applications. This thesis evaluates local features and applies them to image and video processing tasks. The results of the study show that 1) the performance of different local feature detector and descriptor methods vary significantly in object class matching, 2) local features can be applied in image alignment with superior results against the state-of-the-art, 3) the local feature based shot boundary detection method produces promising results, and 4) the local feature based hierarchical video summarization method shows promising new new research direction. In conclusion, this thesis presents the local features as a powerful tool in many applications and the imminent future work should concentrate on improving the quality of the local features.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis, the suitability of different trackers for finger tracking in high-speed videos was studied. Tracked finger trajectories from the videos were post-processed and analysed using various filtering and smoothing methods. Position derivatives of the trajectories, speed and acceleration were extracted for the purposes of hand motion analysis. Overall, two methods, Kernelized Correlation Filters and Spatio-Temporal Context Learning tracking, performed better than the others in the tests. Both achieved high accuracy for the selected high-speed videos and also allowed real-time processing, being able to process over 500 frames per second. In addition, the results showed that different filtering methods can be applied to produce more appropriate velocity and acceleration curves calculated from the tracking data. Local Regression filtering and Unscented Kalman Smoother gave the best results in the tests. Furthermore, the results show that tracking and filtering methods are suitable for high-speed hand-tracking and trajectory-data post-processing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Saimaa ringed seal is one of the most endangered seals in the world. It is a symbol of Lake Saimaa and a lot of effort have been applied to save it. Traditional methods of seal monitoring include capturing the animals and installing sensors on their bodies. These invasive methods for identifying can be painful and affect the behavior of the animals. Automatic identification of seals using computer vision provides a more humane method for the monitoring. This Master's thesis focuses on automatic image-based identification of the Saimaa ringed seals. This consists of detection and segmentation of a seal in an image, analysis of its ring patterns, and identification of the detected seal based on the features of the ring patterns. The proposed algorithm is evaluated with a dataset of 131 individual seals. Based on the experiments with 363 images, 81\% of the images were successfully segmented automatically. Furthermore, a new approach for interactive identification of Saimaa ringed seals is proposed. The results of this research are a starting point for future research in the topic of seal photo-identification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Object detection is a fundamental task of computer vision that is utilized as a core part in a number of industrial and scientific applications, for example, in robotics, where objects need to be correctly detected and localized prior to being grasped and manipulated. Existing object detectors vary in (i) the amount of supervision they need for training, (ii) the type of a learning method adopted (generative or discriminative) and (iii) the amount of spatial information used in the object model (model-free, using no spatial information in the object model, or model-based, with the explicit spatial model of an object). Although some existing methods report good performance in the detection of certain objects, the results tend to be application specific and no universal method has been found that clearly outperforms all others in all areas. This work proposes a novel generative part-based object detector. The generative learning procedure of the developed method allows learning from positive examples only. The detector is based on finding semantically meaningful parts of the object (i.e. a part detector) that can provide additional information to object location, for example, pose. The object class model, i.e. the appearance of the object parts and their spatial variance, constellation, is explicitly modelled in a fully probabilistic manner. The appearance is based on bio-inspired complex-valued Gabor features that are transformed to part probabilities by an unsupervised Gaussian Mixture Model (GMM). The proposed novel randomized GMM enables learning from only a few training examples. The probabilistic spatial model of the part configurations is constructed with a mixture of 2D Gaussians. The appearance of the parts of the object is learned in an object canonical space that removes geometric variations from the part appearance model. Robustness to pose variations is achieved by object pose quantization, which is more efficient than previously used scale and orientation shifts in the Gabor feature space. Performance of the resulting generative object detector is characterized by high recall with low precision, i.e. the generative detector produces large number of false positive detections. Thus a discriminative classifier is used to prune false positive candidate detections produced by the generative detector improving its precision while keeping high recall. Using only a small number of positive examples, the developed object detector performs comparably to state-of-the-art discriminative methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The estimating of the relative orientation and position of a camera is one of the integral topics in the field of computer vision. The accuracy of a certain Finnish technology company’s traffic sign inventory and localization process can be improved by utilizing the aforementioned concept. The company’s localization process uses video data produced by a vehicle installed camera. The accuracy of estimated traffic sign locations depends on the relative orientation between the camera and the vehicle. This thesis proposes a computer vision based software solution which can estimate a camera’s orientation relative to the movement direction of the vehicle by utilizing video data. The task was solved by using feature-based methods and open source software. When using simulated data sets, the camera orientation estimates had an absolute error of 0.31 degrees on average. The software solution can be integrated to be a part of the traffic sign localization pipeline of the company in question.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Programming and mathematics are core areas of computer science (CS) and consequently also important parts of CS education. Introductory instruction in these two topics is, however, not without problems. Studies show that CS students find programming difficult to learn and that teaching mathematical topics to CS novices is challenging. One reason for the latter is the disconnection between mathematics and programming found in many CS curricula, which results in students not seeing the relevance of the subject for their studies. In addition, reports indicate that students' mathematical capability and maturity levels are dropping. The challenges faced when teaching mathematics and programming at CS departments can also be traced back to gaps in students' prior education. In Finland the high school curriculum does not include CS as a subject; instead, focus is on learning to use the computer and its applications as tools. Similarly, many of the mathematics courses emphasize application of formulas, while logic, formalisms and proofs, which are important in CS, are avoided. Consequently, high school graduates are not well prepared for studies in CS. Motivated by these challenges, the goal of the present work is to describe new approaches to teaching mathematics and programming aimed at addressing these issues: Structured derivations is a logic-based approach to teaching mathematics, where formalisms and justifications are made explicit. The aim is to help students become better at communicating their reasoning using mathematical language and logical notation at the same time as they become more confident with formalisms. The Python programming language was originally designed with education in mind, and has a simple syntax compared to many other popular languages. The aim of using it in instruction is to address algorithms and their implementation in a way that allows focus to be put on learning algorithmic thinking and programming instead of on learning a complex syntax. Invariant based programming is a diagrammatic approach to developing programs that are correct by construction. The approach is based on elementary propositional and predicate logic, and makes explicit the underlying mathematical foundations of programming. The aim is also to show how mathematics in general, and logic in particular, can be used to create better programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of the present work was on 10- to 12-year-old elementary school students’ conceptual learning outcomes in science in two specific inquiry-learning environments, laboratory and simulation. The main aim was to examine if it would be more beneficial to combine than contrast simulation and laboratory activities in science teaching. It was argued that the status quo where laboratories and simulations are seen as alternative or competing methods in science teaching is hardly an optimal solution to promote students’ learning and understanding in various science domains. It was hypothesized that it would make more sense and be more productive to combine laboratories and simulations. Several explanations and examples were provided to back up the hypothesis. In order to test whether learning with the combination of laboratory and simulation activities can result in better conceptual understanding in science than learning with laboratory or simulation activities alone, two experiments were conducted in the domain of electricity. In these experiments students constructed and studied electrical circuits in three different learning environments: laboratory (real circuits), simulation (virtual circuits), and simulation-laboratory combination (real and virtual circuits were used simultaneously). In order to measure and compare how these environments affected students’ conceptual understanding of circuits, a subject knowledge assessment questionnaire was administered before and after the experimentation. The results of the experiments were presented in four empirical studies. Three of the studies focused on learning outcomes between the conditions and one on learning processes. Study I analyzed learning outcomes from experiment I. The aim of the study was to investigate if it would be more beneficial to combine simulation and laboratory activities than to use them separately in teaching the concepts of simple electricity. Matched-trios were created based on the pre-test results of 66 elementary school students and divided randomly into a laboratory (real circuits), simulation (virtual circuits) and simulation-laboratory combination (real and virtual circuits simultaneously) conditions. In each condition students had 90 minutes to construct and study various circuits. The results showed that studying electrical circuits in the simulation–laboratory combination environment improved students’ conceptual understanding more than studying circuits in simulation and laboratory environments alone. Although there were no statistical differences between simulation and laboratory environments, the learning effect was more pronounced in the simulation condition where the students made clear progress during the intervention, whereas in the laboratory condition students’ conceptual understanding remained at an elementary level after the intervention. Study II analyzed learning outcomes from experiment II. The aim of the study was to investigate if and how learning outcomes in simulation and simulation-laboratory combination environments are mediated by implicit (only procedural guidance) and explicit (more structure and guidance for the discovery process) instruction in the context of simple DC circuits. Matched-quartets were created based on the pre-test results of 50 elementary school students and divided randomly into a simulation implicit (SI), simulation explicit (SE), combination implicit (CI) and combination explicit (CE) conditions. The results showed that when the students were working with the simulation alone, they were able to gain significantly greater amount of subject knowledge when they received metacognitive support (explicit instruction; SE) for the discovery process than when they received only procedural guidance (implicit instruction: SI). However, this additional scaffolding was not enough to reach the level of the students in the combination environment (CI and CE). A surprising finding in Study II was that instructional support had a different effect in the combination environment than in the simulation environment. In the combination environment explicit instruction (CE) did not seem to elicit much additional gain for students’ understanding of electric circuits compared to implicit instruction (CI). Instead, explicit instruction slowed down the inquiry process substantially in the combination environment. Study III analyzed from video data learning processes of those 50 students that participated in experiment II (cf. Study II above). The focus was on three specific learning processes: cognitive conflicts, self-explanations, and analogical encodings. The aim of the study was to find out possible explanations for the success of the combination condition in Experiments I and II. The video data provided clear evidence about the benefits of studying with the real and virtual circuits simultaneously (the combination conditions). Mostly the representations complemented each other, that is, one representation helped students to interpret and understand the outcomes they received from the other representation. However, there were also instances in which analogical encoding took place, that is, situations in which the slightly discrepant results between the representations ‘forced’ students to focus on those features that could be generalised across the two representations. No statistical differences were found in the amount of experienced cognitive conflicts and self-explanations between simulation and combination conditions, though in self-explanations there was a nascent trend in favour of the combination. There was also a clear tendency suggesting that explicit guidance increased the amount of self-explanations. Overall, the amount of cognitive conflicts and self-explanations was very low. The aim of the Study IV was twofold: the main aim was to provide an aggregated overview of the learning outcomes of experiments I and II; the secondary aim was to explore the relationship between the learning environments and students’ prior domain knowledge (low and high) in the experiments. Aggregated results of experiments I & II showed that on average, 91% of the students in the combination environment scored above the average of the laboratory environment, and 76% of them scored also above the average of the simulation environment. Seventy percent of the students in the simulation environment scored above the average of the laboratory environment. The results further showed that overall students seemed to benefit from combining simulations and laboratories regardless of their level of prior knowledge, that is, students with either low or high prior knowledge who studied circuits in the combination environment outperformed their counterparts who studied in the laboratory or simulation environment alone. The effect seemed to be slightly bigger among the students with low prior knowledge. However, more detailed inspection of the results showed that there were considerable differences between the experiments regarding how students with low and high prior knowledge benefitted from the combination: in Experiment I, especially students with low prior knowledge benefitted from the combination as compared to those students that used only the simulation, whereas in Experiment II, only students with high prior knowledge seemed to benefit from the combination relative to the simulation group. Regarding the differences between simulation and laboratory groups, the benefits of using a simulation seemed to be slightly higher among students with high prior knowledge. The results of the four empirical studies support the hypothesis concerning the benefits of using simulation along with laboratory activities to promote students’ conceptual understanding of electricity. It can be concluded that when teaching students about electricity, the students can gain better understanding when they have an opportunity to use the simulation and the real circuits in parallel than if they have only the real circuits or only a computer simulation available, even when the use of the simulation is supported with the explicit instruction. The outcomes of the empirical studies can be considered as the first unambiguous evidence on the (additional) benefits of combining laboratory and simulation activities in science education as compared to learning with laboratories and simulations alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Communication, the flow of ideas and information between individuals in a social context, is the heart of educational experience. Constructivism and constructivist theories form the foundation for the collaborative learning processes of creating and sharing meaning in online educational contexts. The Learning and Collaboration in Technology-enhanced Contexts (LeCoTec) course comprised of 66 participants drawn from four European universities (Oulu, Turku, Ghent and Ramon Llull). These participants were split into 15 groups with the express aim of learning about computer-supported collaborative learning (CSCL). The Community of Inquiry model (social, cognitive and teaching presences) provided the content and tools for learning and researching the collaborative interactions in this environment. The sampled comments from the collaborative phase were collected and analyzed at chain-level and group-level, with the aim of identifying the various message types that sustained high learning outcomes. Furthermore, the Social Network Analysis helped to view the density of whole group interactions, as well as the popular and active members within the highly collaborating groups. It was observed that long chains occur in groups having high quality outcomes. These chains were also characterized by Social, Interactivity, Administrative and Content comment-types. In addition, high outcomes were realized from the high interactive cases and high-density groups. In low interactive groups, commenting patterned around the one or two central group members. In conclusion, future online environments should support high-order learning and develop greater metacognition and self-regulation. Moreover, such an environment, with a wide variety of problem solving tools, would enhance interactivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014