82 resultados para Cleaning
Resumo:
Ydinvoimaloidenprimaarivesikierron puhdistukseen käytetään ioninvaihtohartsia. Käytönjälkeen ioninvaihtohartsi luokitellaan matalaja keskiaktiivisiin jätteisiin. Plasmakäsittelyllä käytetyn ioninvaihtohartsin tilavuutta voidaan pienentää sekä sen orgaaninen luonne poistaa. Plasmakäsittelyn tarkoituksena on hapettaa orgaaninen aines oksideiksi, jotka poistuvat prosessista savukaasuina. Epäorgaaninen aines, joka sisältää radioaktiivisen aineksen, on tarkoitus hapettaa oksideiksi ja sulfideiksi, jotka voidaan kerätä talteen tuhkana. Tässä diplomityössä käsitellään käytetyn ioninvaihtohartsin käsittelyyn suunnitellun plasmapolttoprosessin kehittämistä ja optimointia. Ioninvaihtohartsin plasmakäsittelyssä syntyvien reaktiotuotteiden selvittäminen suoritettiin tarkastelemalla ainetaseita sekä aihetta käsitteleviä tutkimuksia. Näiden perusteella parannettiin jäähdytystä, suunniteltiin jatkuvatoiminen syöttömenetelmä sekä laadittiin toimintaalueen reunaehdot laitteistolle. Koelaitteistossa 6,5 kW:n rfteho syötetään sovitinpiirin ja kuparisen induktiokelan kautta plasmaan. Plasmakaasuna on käytetty hapenja argonin seoskaasua. Plasmapolttoa on seurattu massaspektrometrilla, optisella emissiospektrometrilla, lämpösekä painemittareilla. Laskennan ja kokeiden pohjalta selvitettiin optimaalinen seossuhde plasmakaasulle, paineen ja tehon noston vaikutus hartsin polttonopeuteen sekä jatkuvatoimisen syöttömenetelmän edut panostoimiseen syöttöön. Rfgeneraattorin teho rajoitti jatkuvatoimisen polttonopeuden 130 g/h ja hetkellisen polttonopeuden 175 g/h. Radioaktiivisten aineiden pidätys oli 93,5 % cesiumin osalta. Tulosten perusteella 4 kg/h ioninvaihtohartsia polttavan laitteiston tehon lähteeksi tarvitaan 65 kW rfgeneraattori. Palamattoman hartsin ja tuhkan kulkeutuminen partikkelisuodattimille sekä reaktiotuotteena syntyvien rikinoksidien käsittely vaatii vielä jatkotutkimusta.
Resumo:
Tässä diplomityössä tutkittiin pilaantuneen maan puhdistamiseen käytettävän termodesorptiolaitoksen päästöjä ilmaan. Tarkasteluun otettiin raskasmetallit ja happamista päästöistä rikkidioksidi (SO2) ja vetykloridi (HCl).Näiden haitta-aineiden puhdistusta tutkittiin mittaamalla niiden pitoisuuksia ennen ja jälkeen kaasunpuhdistuksen. Tutkimuksessa havaittiin raskasmetallien sekä happamien yhdisteiden puhdistuvan käytössä olevalla tekniikalla erittäin hyvin. Viranomaisten asettamat päästöraja-arvot alitettiinselvästi.
Resumo:
Pölyäminen aiheuttaa ongelmia sekä paperin valmistuksessa paperikoneella että asiakkaalla painokoneella. Pölyäminen painokoneella aiheuttaa kumulatiivisia kertymiä painokumeille, -levyille ja kostutusvesijärjestelmään. Pölykertymistä seuraa painojäljen heikkenemistä, pesukertojen lisääntymistä ja tuotantokatkoja. Lisääntynyt painaminen tahmeilla offsetväreillä ja täyteaineiden käyttö paperin raaka-aineena on aiheuttanut paperin pölyämisherkkyyden kasvamista. Paperin pölyävyyteen vaikuttavia tekijöitä valmistuksessa, jälkikäsittelyssä ja jatkojalostuksessa on useita, mikä tekee ilmiöstä monimutkaisen. Paperin painatuksessa esiintyvän pölyävyyden ennakoimiseksi tutkittiin erilaisten pölymittausmenetelmien käytettävyys ja luotettavuus. Työssä käytetyt menetelmät olivatMac Millan Bloedel pölytesteri, R.A. Emerson & Company:n pölymittalaite, Finntesteri, SOLA, Masuga, arkkipainatus sekä IGT ja Prüfbau laboratoriopainatukset. Menetelmien luotettavuus arvioitiin vertaamalla saatuja pölytuloksia testipainatuksesta saatuihin pölytuloksiin ja Gage R&R testiä käyttäen. Lisäksi työssä selvitettiin paperin pölyävyyteen vaikuttavia tekijöitä, ja tutkittiin prosessiolosuhteiden vaikutusta paperin pölyävyyteen. Tutkimus osoitti tuotantoprosessin olosuhteissa tehtyjen muutosten aiheuttavan oleellisia muutoksia paperin pölyävyyteen. Käytettävän massan ominaisuuksilla, tuotantoprosessin kemian hallinnalla sekä paperin ominaisuuksista etenkin lujuus- ja formaatio-ominaisuuksilla on selkeästi yhteyttä paperin pölyävyyteen painatuksessa. Pölymittauksilla paperin valmistuksen yhteydessä voidaan tasollisesti arvioida paperinpölyävyys painatuksessa, mutta absoluuttisten tulosten saaminen on ilmiön monimuotoisuudesta johtuen mahdotonta. Käytetyistä menetelmistä tähän tuotantoprosessiin toimivin pölyävyyden mittamenetelmä on R.A. Emerson & Company:n pölymittalaite. Laite on yksinkertainen ja nopea käyttää, eikä toteutus vaadi suuria investointeja.
Resumo:
Työn tavoitteena on kartoittaa ja arvioida asiakastarpeita hienojakoisen hiilen ja nesteen erotuksessa. Aluksi työssä kuvataan hiiliteollisuutta, jonka jälkeen syvennytäänhiilen ja nesteen erotukseen. Tämän jälkeen keskitytään asiakastarpeiden kartoittamiseen. Jo olemassaolevan tiedon keräämiseen käytetään haastatteluja ja kysymyslomakkeita. Saatyn AHP-mallia hyödynnetään asiakastarpeiden arvioinnissa. Yksi suurimmista haasteista puhtaan hiiliteknologian käytössä on kustannustehokas nesteen ja hienojakoisen hiilen erotus, joka on tärkeää rahtauskustannusten minimoinnin, laatuvaatimusten täyttämisen ja prosessiveden kierrättämisen kannalta. Tekniset ominaisuudet ja kustannukset ovat tärkeimmät ominaisuudet hiilen ja veden suodatinratkaisussa asiantuntijoiden mukaan. Asiakkaan mukaan laatu, tekniset ominaisuudet ja tukipalvelut ovat tärkeitä.Sekä asiakkaan että asiantuntijoiden mielestä korkea yksikkökapasiteetti, matala lopputuotteen kosteus ja luotettavuus ovat tärkeimmät tekniset ominaisuudet. Investointikustannukset ovat noin kolme kertaa tärkeämpiä kuin käyttökustannukset. Asiakkaan mukaan laitetoimittajan ominaisuudet ovat tärkeämpiä kuin teknologiset ominaisuudet.
Resumo:
Educaworks Oy on toiminut viisi vuotta oppimistehtaana, jonka omistajia ovat olleet yritykset ja oppilaitokset. Yrityksen pääasiallisia työntekijöitä ovat tähän mennessä olleet ammattiopiston työssäoppijat ja parina viimeisenä vuotena on yrityksellä ollut palkkalistoillaan omia työntekijöitä. Tässä työssä luotiin vaihtoehtoja Educaworks Oy:n tulevalle toiminnalle lähtien siitä, että tämä nykyinen toimintamalli on tullut tiensä päähän ja tarvitaan uusi malli toiminnan jatkamiselle.Työssä haettiin hyviä käytäntöjä Suomesta benchmarkingin avulla. Näiden mallienvahvuuksia hyödyntämällä pystyttiin kehittämään vaihtoehto Educaworks Oy:n tulevalle toiminnalle. Tämä malli, oppimistehdas osana osaamiskeskittymää, valittiin toteutettavaksi kolmesta eri vaihtoehdosta, joista kaksi muuta olivat oppimistehdas yrityksenä ja oppimistehdas osana koulutusorganisaatiota. Valitussa vaihtoehdossa hyödynnetään Savonia-ammattikorkeakoulun suunnitteilla olevaa EducaTech Center-hanketta, jossa on tarkoitus luoda Iisalmeen teknologiateollisuuden osaamiskeskittymä seuraavan EU-kauden 2007-2013 aikana. Valitussa mallissa Educaworks Oy hyödyntää tulevassa toiminnassaan tämän osaamiskeskittymän uutta kone- ja laitekantaa sekä tekee yhteistyötä keskittymän tutkimus- ja tuotekehityshenkilökunnan kanssa. Yritykset pääsevät parhaiten osallisiksi Educa Tech Center osaamiskeskittymän tuottamista palveluista hankkimalla Educaworks Oy:n osakkeita ja pääsemällä täten keskittymän ytimeen sen tuotannollisen toimijan, Educaworks Oy:n, avulla. Educaworks Oy toimii tässä keskittymässä komponenttitoimittajan roolissa ollen malli komponenttitoimittajasta muillealueella oleville vastaaville verkostoissa toimiville yrityksille. Educaworks Oy:n toiminnan toisena periaatteena tulee olemaan työssäoppiminen. Työssäoppiminen on tänä päivänä osa ammatillista koulutusta ja sen merkityskorostuu yhä enemmän, koska oppilaat tulevat opiskelemaan tänä päivänä monesti lähtökohdista, joissa heillä ei ole ollut mahdollisuutta harjoittaa käytännön taitojaan ennen ammatillisten opiskelujen aloittamista. Työpaikoilla ei ole vielä kovin hyvää valmiutta toteuttaa sitä opetushallituksen tavoitetta, että oppilaatoppisivat työssäoppimisjaksoilla uusia asioita ohjatusti. Työpaikoilta puuttuu työssäoppimisen ohjaajat ja oppilaiden tekemät harjoitteet ovat liian monta kertaa ammatillisesti kovin vaatimattomia jäysteenpoisto- tai kappaleenvaihtotöitä koneistuksesta puhuttaessa. Tässä työssä luodaan mallia oppilaiden ohjatulle työssäoppimiselle tehtyjen tieteellisten tutkimusten pohjalta. Tavoitteena on, että Educaworks Oy:ssä pystyttäisiin jatkossa kouluttamaan myös muiden alueen teknologiateollisuuden yritysten työntekijöitä toimimaan työssäoppimisen ohjaajina.
Resumo:
Työn tarkoituksena oli kehittää jatkuvatoimiseen pesuun soveltuva emäksinen ja hapan huovanpesuaine sekä tutkia huovanpesun parametreja laboratoriossa ja paperikoneella. Kirjallisuusosassa tarkasteltiin paperikoneen puristinosaa, puristinhuopien ominaisuuksia, puristinhuovissa esiintyviä saostumia ja puristinhuopien kunnostusta sekä esiteltiin FeltPerm-vedenläpäisykykymittari. Kokeellisessa osassa analysoitiin käytetty huopa kvalitatiivisesti ja kvantitatiivisesti ja kun huopaa tukkivien yhdisteiden kemiallinen luonne oli selvitetty, kehitettiin käynninaikaiseen pesuun soveltuva emäksinen ja hapan huovanpesuaine. Huovanpesuaineiden kehitystyössä pesuaineiden tehokkuutta tutkittiin kolmella eri menetelmällä, joista kaksi perustui huovan massan muutoksen määrittämiseen pesussa ja yksi huovan vedenläpäisykyvyn mittaamiseen. Kehitetyillä pesuaineilla optimoitiin laboratoriossa happo- ja emäspesun pH sekä vaikutusaika. Lisäksi tutkittiin huovan turpoamista emäspesussa ja lämpötilan vaikutusta pesutulokseen. Puristinhuopien vedenläpäisykykyä tutkittiin FeltPerm-laitteella kahdella eri SC-paperikoneella, joista toisella oli käytössä käynninaikainen jaksottainen pesu ja toisella pelkät seisokkipesut. Koneella, jossa huovat pestiin käynninaikaisesti, määritettiin pesuparametreja ja optimoitiin emäsvaiheen aikainen pH. Kehitetyillä pesuaineilla suoritettiin koeajo tehtaalla.
Resumo:
Työn tarkoitus oli testata kartonkikoneen lyhyen kierron ilmapitoisuuden merkitystä kartongin ominaisuuksiin. Aluksi työssä selvitettiin ilmapitoisuuden alkutilanne käyttäen kompressioilmiöön perustuvaa ilmapitoisuusmittaria. Sen jälkeen tehtiin kokeita käyttäen POMp-pumppua sekä vaahdonestoainetta. Tarkoituksena oli luoda yhteys prosessin ilmapitoisuuden ja lopputuotteen ominaisuuksien välille. POMp-kokeissa tutkittiin keskipakopumppauksen vaikutusta massan ilmapitoisuuteen. Tuloksista nähdään, että pintakerroksen ilmapitoisuus oli suurempi kuin taustakerroksen, mikä selittyy POMp-pumpun sijainnilla taustakerroksen lyhyessä kierrossa. Vaahdonestoainekokeissa saatiin myös vaikutuksia massan ilmapitoisuuteen. Vaahdonestoaineen lisäyksen jälkeen runkokerroksenilmapitoisuus laski, kun samanaikaisesti pinta- ja taustakerroksen sekä rejektisysteemin ilmapitoisuudet nousivat. Ilmapitoisuuden käytöksen syyksi paljastui lyhyen kierron yhteinen vesikierto ja nykyisille tuotantomäärille alimitoitettu ilmanpoistokapasiteetti. Vaahdonestoaineen lisäyksen jälkeen vedenpoisto parani ja ensimmäisillä kolmella runkokerroksen foililaatikolla havaittiin poistuvan veden virtausten kasvaneen. Samaan aikaan runkokerroksen viiraosan lopulla poistuvan veden virtaukset pienenivät. Kartongin ominaisuuksissa ei havaittu kuitenkaan eroa, vaikka vedenpoisto parani viiraosalla selvästi. Vaahdonestoainekokeiden aikana oli myös tavallista enemmän ajettavuusongelmia, kuten ratakatkoja. Prosessissa esiintyneitä ongelmia ja niihin reagoivia muutosehdotuksia esitellään myös. Vaikein ongelma oli ilman muodostuminen runkokerroksen lyhyessä kierrossa. Ratkaisu voisi koostua isommasta keskikerroksenvesilukkosäiliöstä ja runkokerroksen lyhyen kierron puhdistusveden uudelleen kohdentamisesta. Voisi myös olla hyödyllistä yrittää ilmanpoistoa kemikaalien avulla kiertoveden varastosäiliössä.
Resumo:
In this thesis, cleaning of ceramic filter media was studied. Mechanisms of fouling and dissolution of iron compounds, as well as methods for cleaning ceramic membranes fouled by iron deposits were studied in the literature part. Cleaning agents and different methods were closer examined in the experimental part of the thesis. Pyrite is found in the geologic strata. It is oxidized to form ferrous ions Fe(II) and ferric ions Fe(III). Fe(III) is further oxidized in the hydrolysis to form ferric hydroxide. Hematite and goethite, for instance, are naturally occurring iron oxidesand hydroxides. In contact with filter media, they can cause severe fouling, which common cleaning techniques competent enough to remove. Mechanisms for the dissolution of iron oxides include the ligand-promoted pathway and the proton-promoted pathway. The dissolution can also be reductive or non-reductive. The most efficient mechanism is the ligand-promoted reductive mechanism that comprises two stages: the induction period and the autocatalytic dissolution.Reducing agents(such as hydroquinone and hydroxylamine hydrochloride), chelating agents (such as EDTA) and organic acids are used for the removal of iron compounds. Oxalic acid is the most effective known cleaning agent for iron deposits. Since formulations are often more effective than organic acids, reducing agents or chelating agents alone, the citrate¿bicarbonate¿dithionite system among others is well studied in the literature. The cleaning is also enhanced with ultrasound and backpulsing.In the experimental part, oxalic acid and nitric acid were studied alone andin combinations. Also citric acid and ascorbic acid among other chemicals were tested. Soaking experiments, experiments with ultrasound and experiments for alternative methods to apply the cleaning solution on the filter samples were carried out. Permeability and ISO Brightness measurements were performed to examine the influence of the cleaning methods on the samples. Inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis of the solutions was carried out to determine the dissolved metals.
Resumo:
Työssä tutkittiin kalvon likaantumiseen vaikuttavia tekijöitä juoksuteheran nanosuodatuksessa. Tutkimuksessa käytettiin Desal-5 DK kalvoa. Heran nanosuodatukset suoritettiin yhden spiraalimoduulin käsittävää pilot -mittakaavaista suodatuslaitteistoa käyttäen. Työssä selvitettiin suodatettavan heran iän, pastörointilämpötilan, pH:n, suodatuslämpötilan sekäheran sisältämän juustopölyn, lisätyn kalsiumkloridin määrän ja rasvan laadun vaikutusta permeaattivuohon. Jokaista tekijää testattiin kahta eri muuttujaa käyttäen. Työssä tutkittiin myös kahden samanlaisen kalvon välisiä läpäisevyyseroja. Heran pastörointilämpötila, pH ja suodatuslämpötila osoittautuivat kalvon likaantumisen kannalta tärkeimmiksi tekijöiksi heran nanosuodatuksessa. Permeaattivuo oli korkeampi suodatettaessa 74 ºC lämpötilassa pastöroitua heraa, kuin 78 ºC lämpötilassa pastöroitua. Hera suodattui paremmin silloin, kunsen pH oli säädetty 5,8:aan, kuin heran pH:n ollessa säädettynä 5,2:een. Suodatettaessa 18 ºC suodatuslämpötilaan temperoitua heraa havaittiin korkeampi permeaattivuo kuin 12 ºC lämpötilaan termostoitua heraa suodatettaessa. Heran sisältämä pölyn määrä, rasvan laatu ja heran ikä havaittiin tilastollisesti merkityksettömiksi tekijöiksi sekä heran suodattuvuuden, että kalvon puhdistuvuuden kannalta. Kalsiumkloridin lisääminen heraan ennen suodatusta vaikuttivain kalvon suodatuksen jälkeiseen peseytyvyyteen. Kalvo puhdistui paremmin, kun kalsiumkloridia ei oltu lisätty heraan ennen suodatusta. Desal-5 DK kalvojen läpäisevyyseroja tutkittiin suodattamalla glukoosia ja natriumkloridia sisältävää malliaineliuosta kummankin vertailtavan kalvon läpi. Kokeissa havaittiin, että toista nanosuodatuskalvoa käytettäessä mitatut vesivuot olivat jopa 100 % korkeampia kuin vertailukalvoa käytettäessä mitatut. Myös glukoosin kalvolle pidättymisessä havaittiin eroja kalvojen välillä. Syyksi suuriin läpäisevyyseroihin arveltiin riittämätöntä kalvojen esikäsittelyä ennen malliainekokeen suorittamista, joten ei pystytty arvioimaan, oliko kalvojen läpäisevyyksissävalmistusprosessista johtuvia eroja.
Resumo:
Environmentally harmful consequences of fossil fuel utilisation andthe landfilling of wastes have increased the interest among the energy producers to consider the use of alternative fuels like wood fuels and Refuse-Derived Fuels, RDFs. The fluidised bed technology that allows the flexible use of a variety of different fuels is commonly used at small- and medium-sized power plants ofmunicipalities and industry in Finland. Since there is only one mass-burn plantcurrently in operation in the country and no intention to build new ones, the co-firing of pre-processed wastes in fluidised bed boilers has become the most generally applied waste-to-energy concept in Finland. The recently validated EU Directive on Incineration of Wastes aims to mitigate environmentally harmful pollutants of waste incineration and co-incineration of wastes with conventional fuels. Apart from gaseous flue gas pollutants and dust, the emissions of toxic tracemetals are limited. The implementation of the Directive's restrictions in the Finnish legislation is assumed to limit the co-firing of waste fuels, due to the insufficient reduction of the regulated air pollutants in the existing flue gas cleaning devices. Trace metals emission formation and reduction in the ESP, the condensing wet scrubber, the fabric filter, and the humidification reactor were studied, experimentally, in full- and pilot-scale combustors utilising the bubbling fluidised bed technology, and, theoretically, by means of reactor model calculations. The core of the model is a thermodynamic equilibrium analysis. The experiments were carried out with wood chips, sawdust, and peat, and their refuse-derived fuel, RDF, blends. In all, ten different fuels or fuel blends were tested. Relatively high concentrations of trace metals in RDFs compared to the concentrations of these metals in wood fuels increased the trace metal concentrations in the flue gas after the boiler ten- to hundred-folds, when RDF was co-fired with sawdust in a full-scale BFB boiler. In the case of peat, lesser increase in trace metal concentrations was observed, due to the higher initial trace metal concentrations of peat compared to sawdust. Despite the high removal rate of most of the trace metals in the ESP, the Directive emission limits for trace metals were exceeded in each of the RDF co-firing tests. The dominat trace metals in fluegas after the ESP were Cu, Pb and Mn. In the condensing wet scrubber, the flue gas trace metal emissions were reduced below the Directive emission limits, whenRDF pellet was used as a co-firing fuel together with sawdust and peat. High chlorine content of the RDFs enhanced the mercuric chloride formation and hence the mercury removal in the ESP and scrubber. Mercury emissions were lower than theDirective emission limit for total Hg, 0.05 mg/Nm3, in all full-scale co-firingtests already in the flue gas after the ESP. The pilot-scale experiments with aBFB combustor equipped with a fabric filter revealed that the fabric filter alone is able to reduce the trace metal concentrations, including mercury, in the flue gas during the RDF co-firing approximately to the same level as they are during the wood chip firing. Lower trace metal emissions than the Directive limits were easily reached even with a 40% thermal share of RDF co-firing with sawdust.Enrichment of trace metals in the submicron fly ash particle fraction because of RDF co-firing was not observed in the test runs where sawdust was used as the main fuel. The combustion of RDF pellets with peat caused an enrichment of As, Cd, Co, Pb, Sb, and V in the submicron particle mode. Accumulation and release oftrace metals in the bed material was examined by means of a bed material analysis, mass balance calculations and a reactor model. Lead, zinc and copper were found to have a tendency to be accumulated in the bed material but also to have a tendency to be released from the bed material into the combustion gases, if the combustion conditions were changed. The concentration of the trace metal in the combustion gases of the bubbling fluidised bed boiler was found to be a summary of trace metal fluxes from three main sources. They were (1) the trace metal flux from the burning fuel particle (2) the trace metal flux from the ash in the bed, and (3) the trace metal flux from the active alkali metal layer on the sand (and ash) particles in the bed. The amount of chlorine in the system, the combustion temperature, the fuel ash composition and the saturation state of the bed material in regard to trace metals were discovered to be key factors affecting therelease process. During the co-firing of waste fuels with variable amounts of e.g. ash and chlorine, it is extremely important to consider the possible ongoingaccumulation and/or release of the trace metals in the bed, when determining the flue gas trace metal emissions. If the state of the combustion process in regard to trace metals accumulation and/or release in the bed material is not known,it may happen that emissions from the bed material rather than the combustion of the fuel in question are measured and reported.
Resumo:
Työn tavoitteena oli selvittää Suomenlahden rannalta merkittävän suuruisen alusöljyvahingon jälkeen kerättävän öljyisen jätteen käsittelymahdollisuudet ja -kapasiteetit sekä loppusijoitusmahdollisuudet ja -kapasiteetit Kymenlaakson alueen näkökulmasta. Tarkoituksena oli selvittää, missä jätteiden käsittely voidaan toteuttaa sekä, miten öljyisiä jätteitä voidaan esikäsitellä välivarastoinnin aikana puhdistuksen ja loppusijoituksen tehostamiseksi. Tutkimuksen kohteena oli sekä rannalta kerättävät kiinteät öljyiset ainekset että öljyinen merivesi. Työn alussa on perehdytty jätehuoltovastuuseen, eli kenen vastuulla öljyalusonnettomuuksissa syntyvät öljyiset jätteet ovat. Työssä on esitelty lyhyesti öljyvahinkojätteille teknisesti soveltuvien käsittelymenetelmien periaatteet ja menetelmien rajoituksia käsitellä öljyvahinkojätetteitä. Työssä on myös mainittu aiemmin Suomea koskettaneiden tai maailmalla tapahtuneiden alusöljyvahinkojen jätemääriä ja tapauksissa käytettyjä jätteiden käsittelymenetelmiä. Työ painottuu esittelemään Kymenlaakson alueen laitosten, Riihimäen Ekokem Oy Ab:n ja siirrettävien laitteistojen mahdollisuuksia käsitellä öljyisiä jätteitä. Lisäksi on esitelty öljyisen meriveden käsittelyyn soveltuvia laitoksia Kymenlaakson alueen näkökulmasta. Tietoja on kerätty puhelimitse ja sähköpostitse yritysten edustajilta vuoden 2007 aikana. Kymenlaakson alueella voidaan polttaa voimalaitosten leijupedeissä puhtaaseen polttoaineeseen sekoitettuja öljyisiä orgaanisia aineksia ja murskautuvia puhdistustyössä käytettyjä varusteita noin 10 000 t/a, homogenoitua öljyistä orgaanista ainesta voidaan polttaa Leca-soratehtaan rumpu-uunissa noin 1 200 t/a. Alueen polttokapasiteetti kasvaa, kun työn aikana rakenteilla oleva jätteenpolttolaitos valmistuu ja jätettä voidaan polttaa laitoksen arinalla. Haihtuvilla öljy-yhdisteillä pilaantuneita maa-aineksia voidaan alipainekäsitellä, jos yhdisteet eivät ole haihtuneet jo merellä. Erityisesti öljyiset maaainekset voidaan käsitellä alhaisilla öljypitoisuuksilla (öljypitoisuus noin alle 1-2 %) bitumistabiloimalla, aumakompostoimalla tai pesemällä siirrettävällä pesulaitteistolla. Kymenlaakson alueelle voidaan tuoda myös alueen ulkopuolelta siirrettäviä laitteistoja. Siirrettävät termodesorptiolaitteistot on tehty pilaantuneen maa-aineksen ensisijaiseen käsittelyyn, mutta samalla voidaan käsitellä myös muita jätejakeita, joilla on pieni partikkelikoko (alle 5-10 cm). Savaterra Oy:n siirrettävän termodesorptiolaitteiston kapasiteettiarvio on 100 000 t/a. Myös Niska & Nyyssönen Oy:llä on siirrettävä termodesorptiolaitteisto. Doranova Oy:n siirrettävän pesulaitteiston kapasiteettiarvio on 30 000- 50 000 t/a öljyistä maa-ainesta. Tutkimuksessa on ollut mukana myös Riihimäen Ekokem Oy Ab:n jätevoimala, jonka kapasiteettiarvio on 40 000-45 000 t/a erityisesti öljyisille orgaanisille aineksille, varusteille ja kuolleille eläimille. Riihimäen Ekokem Oy Ab:n ongelmajätelaitoksen rumpuuuneissa voidaan käsitellä arviolta 80 000-100 000 t/a öljyisiä maa-aineksia eli kiinteitä jätteitä, joiden partikkelikoko on suunnilleen alle 10 cm, ja 20 000 t/a nestemäisiä öljyisiä jätteitä. Työn loppupuolella on esitelty myös öljyisen meriveden käsittelyyn soveltuvia laitoksia ja niiden rajoituksia käsitellä kyseistä jätettä. Kyseisten laitosten kapasiteetit selviävät usein vasta onnettomuuden sattuessa. Kaikkiin annettuihin kapasiteettiarvioihin vaikuttaa merkittävästi jätteen koostumus. Raportin lopussa on esitelty alustava toimintasuunnitelma öljyvahinkojätteen käsittelemiseksi. Suunnitelmaan sisältyvät eri jätejakeille laaditut kaaviot, joista voi nähdä muun muassa eri jätekoostumuksille teknisesti soveltuvat käsittelymenetelmät ja käsittelymenetelmiä suorittavat yritykset. Öljyalusonnettomuuden sattuessa soveltuviin yrityksiin tulee ottaa yhteyttä ja selvittää kyseisellä hetkellä vapaana oleva käsittelykapasiteetti. Raportissa on myös esitelty käsittelykustannuksiin vaikuttavia tekijöitä ja arvioitu aiheutuvia kuljetuskustannuksia. Saadut tutkimustulokset ovat hyödynnettävissä erityisesti Kymenlaakson alueella. Tiedot käsittelymenetelmistä ja niiden rajoitteista ovat hyödynnettävissä valtakunnallisesti.
Resumo:
GMP-säädösten mukaan aktiivisten lääkeaineiden, kriittisten lääkeaineintermediaattien ja lääkeapuaineiden valmistusprosessit pitää validoida. Validointityöhön kuuluu oleellisesti tuotantolaitteiden kvalifiointi ja prosessin validointi. Käytännössä tuotantolaitteiden kvalifiointi toteutetaan tekemällä laitteille suunnitelmien tarkastus (DQ), asennus- ja käyttöönottotarkastus (IQ), toiminnan testaus (OQ) sekä suorituskykytestit (PQ). Tuotantolaitteiden kvalifiointiin kuuluu myös laitteiden asianmukaisten kalibrointi-, kunnossapito- ja puhdistusohjeiden sekä työ- ja toimintaohjeiden (SOP:ien) laatiminen. Prosessin validoinnissa laaditaan dokumentoidut todisteet siitä, että prosessi toimii vakaasti ja tuotteelle asetetut vaatimukset täyttyvät johdonmukaisesti. GMP-tuotantolaitteiden kvalifiointiin ja lääkevalmistusprosessin validointiin on laadittu erilaisia GMP-säädöksiä noudattavia yleisiä validointiohjeita, kuten PIC/S:n ja FDA:n ohjeet kvalifioinnista ja validoinnista. IVT/SC on laatinut yksiselitteiset validointistandardit validointityön selventämiseksi. Validoinnin tilastolliseen tarkasteluun on käytettävissä GHTF:n laatimat tilastolliset validointimenetelmät. Yleensä tuotantolaitteiden kvalifiointi ja prosessin validointi tehdään ennen lääkevalmisteen kaupallisen tuotannon aloittamista. Kvalifiointi- ja validointityö voidaan tehdä kuitenkin myös tuotannon yhteydessä (konkurrentisti) tai retrospektiivisesti käyttäen hyväksi valmistettujen tuotantoerien prosessitietoja. Tässä työssä laadittiin Kemira Fine Chemicals Oy:n Kokkolan GMP-tuotantolinjan lääkeaineintermediaattiprosessin validoinnin yleissuunnitelma (VMP), joka sisältää sekä tuotantolaitteiden kvalifiointisuunnitelman että prosessin validointisuunnitelman. Suunnitelmissa huomioitiin tuotantolaitteiden aikaisempi käyttö muuhun hienokemikaalituotantoon ja tuotantolinjan muuttaminen GMP-vaatimusten mukaiseksi. Työhön kuului myös tuotantolaitteiden kvalifiointityön tekeminen laaditun suunnitelman mukaisesti.
Resumo:
Tässä diplomityössä tutkittiin eri tyyppisten viirojen vedenpoisto-ominaisuuksia ja markkeeraavuutta HSRT-laitteistolla. Tarkoitus oli myös selvittää muodostuvan paperiarkin rakennetta ja HSRT-laitteiston soveltuvuutta viiravertailuun. Työn kirjallisuusosassa käsitellään märkäviiroja sekä niiden valmistamista, valintaa eri kriteerein, kulumista ja puhdistamista. Lisäksi käsitellään viirojen markkeeraavuutta ja viiraosan vedenpoistoa. Sekä vedenpoistokyvyn että markkeeraavuuden osalta tulokset olivat niin tasaiset eri suureiden suhteen, ettei etenkään sisäviirojen välillä saatu näkyviin selviä eroja. Markkeeraavuuden osalta laitteiston ominaisuutena näyttäisi olevan se, ettei sisäviiran puoleinen markkeeraus näy arkissa. Tästä syystä vertailut DPCJ-laitteen ja koepaperikoneen tuloksiin olivat mahdottomia. Sen sijaan ulkoviiran puolella markkeeraus oli havaittavissa useimmissa tapauksissa. Tutkimuksen perusteella vaikuttaa kuitenkin siltä, ettei HSR-Tester sovellu viirojen vedenpoistonkyvyn ja markkeeraavuuden vertailuun.
Resumo:
Tämä työ on osa tutkimusprojektia, jonka tarkoituksena on kehittää uudentyyppinen kaasutustekniikkaan perustuva kiinteistöjen lämmitysjärjestelmä. Työ on tehty osaksi kirjallisuustutkimuksena käyttämällä hyödyksi alalla tehtyjä tutkimuksia ja kirjallisuutta. Kirjallisuustutkimuksen tavoitteena oli luoda yhtenäinen tietopaketti lämmitysjärjestelmän kehityksen tueksi. Työn kokeellisen osion tavoitteena oli tutkia lämmitysjärjestelmän kaasuttimen prototyypin toimintaa ja selvittää sen käyttöön liittyviä ongelmia. Kirjallisuusosiossa käsitellään kaasutuksen vaiheita: alkulämpeneminen ja kuivuminen, syttyminen, pyrolyysi sekä jäännöshiilen palaminen ja kaasutus. Varsinkin pyrolyysiprosessin tunteminen on merkittävää, kun halutaan parantaa biomassan poltto- ja kaasutusprosessien suunnittelua. Lisäksi kirjallisuusosiossa käsitellään kaasutuksessa syntyvän tuotekaasun ominaisuuksia: koostumus, lämpöarvo, tiheys ja palamisominaisuudet. Tuotekaasun ominaisuudet vaihtelevat suuresti kaasutusprosessista ja -olosuhteista sekä polttoaineesta riippuen. Tuotekaasun kohdalta käsitellään myös sen käyttökohteita. Perinteisesti kaasutuksen tuotekaasua käytetään lämmöntuotantoon, mutta tulevaisuuden haasteena on tuotekaasun käyttö kaasuturbiineissa sähköntuotantoon. Tuotekaasun käyttöä laajemmin rajoittaa sen sisältämät epäpuhtaudet. Tämän vuoksi kirjallisuusosiossa käsitellään myös tuotekaasun puhdistusmenetelmiä ja sen poltossa syntyvien päästöjen vähentämiskeinoja. Kokeellisessa osiossa suoritettiin puupellettien kaasutuskokeita TTKK:n Energia- ja prosessitekniikan laitoksen raskaaseen laboratorioon rakennetulla kaasutusreaktorilla. Kaasutuskokeiden avulla löydettiin kaasutusreaktorin toiminnan ongelmakohdat ja pystyttiin aloittamaan lämmitysjärjestelmän jatkokehitys.
Resumo:
Tässä diplomityössä on selvitetty hiilestä, jätteestä tai biopolttoaineesta kaasutetun kaasun märkä- ja kuivapuhdistusta. Kaasutuskaasun puhdistuksella voidaan likainen ja jopa ongelmallinen aines muuttaa tai puhdistaa sellaiseksi ympäristökelpoiseksi polttoaineeksi, että sitä voidaan käyttää nykyisissä kulutuskohteissa ongelmitta. Lisäkannustusta kaasutuskaasun puhdistus saa uusista EU-direktiiveistä, jotka tulevat rajoittamaan jätteiden läjittämistä kaatopaikoille. Loppusijoitukseen meneviä jätevirtoja voidaan energiakäytöllä pienentää huomattavasti.Työ on tehty PVO-Engineering Oy:n voimalaitostekniikan osastolle kevään 2001 aikana. Työn tavoitteena oli kasvattaa yrityksen tietomäärää kaasutuskaasun puhdistuksen osalta. Lisäksi pyrittiin selvittämään uuden keraamisen pussisuodatinmateriaalin käyttöä kaasutuskaasun kuumakuivasuodatuksessa. Työn ensimmäisessä osassa esitetään kaasutuskaasun koostumuksen ja syntymisen lisäksi tämän työn lähtökohdat ja tavoitteet. Toisessa osassa selvitetään kaasulle asetettavia vaatimuksia eri käyttötapojen mukaan. Kolmannessa ja neljännessä osassa selvitetään puhdistettavien komponenttien käyttäytymistä ja sopivia puhdistusmenetelmiä.Kaasutuskaasun puhdistustekniikka vaihtelee paljonkin riippuen kaasun käyttökohteesta. Eroja syntyy käyttökohteen asetettamista vaatimuksista polttoaineelle, kaasutettavan polttoaineen koostumuksesta ja laadun vaihtelusta. Puhdistuksessa keskitytään kloori -, rikki -, typpi - ja metalliyhdisteiden poistamiseen kaasuvirrasta. Erotuskyvyllä arvioituna eri puhdistusmenetelmistä tehokkaimpia ovat pesurisähkösuodatinyhdistelmät. Niiden suuret jätemäärät ovat kuitenkin iso ongelma. Kuumakuivapuhdistuksessa pyritään kehittämään menetelmä, jossa syntyvät jätemäärät ovat pieniä ja puhdistustulos on riittävä. Puhdistuksen apukeinona käytetään usein erilaisia katalyyttejä. Tunnetuimpia ovat erilaiset kalsiumpohjaiset materiaalit ja mineraalit. Katalyyteillä voidaan tehostaa tarpeellisia kemiallisia reaktioita puhdistusprosessissa. Kaikki puhdistukseen liittyvät ongelmat ovat kooltaan niin suuria, että niiden ratkaisemiseksi on tulevaisuudessa tehtävä lujasti töitä. Markkinanäkymät toimivalle puhdistustekniikalle ovat nykymaailmassa hyvät. Niinpä tuotekehitykseen laitetut panokset voivat tulevaisuudessa olla yritykselle kullan arvoisia.