21 resultados para Alcohol Safety Action Project--Oklahoma City, Okla.
Resumo:
Recently, Small Modular Reactors (SMRs) have attracted increased public discussion. While large nuclear power plant new build projects are facing challenges, the focus of attention is turning to small modular reactors. One particular project challenge arises in the area of nuclear licensing, which plays a significant role in new build projects affecting their quality as well as costs and schedules. This dissertation - positioned in the field of nuclear engineering but also with a significant section in the field of systems engineering - examines the nuclear licensing processes and their suitability for the characteristics of SMRs. The study investigates the licensing processes in selected countries, as well as other safety critical industry fields. Viewing the licensing processes and their separate licensing steps in terms of SMRs, the study adopts two different analysis theories for review and comparison. The primary data consists of a literature review, semi-structured interviews, and questionnaire responses concerning licensing processes and practices. The result of the study is a recommendation for a new, optimized licensing process for SMRs. The most important SMR-specific feature, in terms of licensing, is the modularity of the design. Here the modularity indicates multi-module SMR designs, which creates new challenges in the licensing process. As this study focuses on Finland, the main features of the new licensing process are adapted to the current Finnish licensing process, aiming to achieve the main benefits with minimal modifications to the current process. The application of the new licensing process is developed using Systems Engineering, Requirements Management, and Project Management practices and tools. Nuclear licensing includes a large amount of data and documentation which needs to be managed in a suitable manner throughout the new build project and then during the whole life cycle of the nuclear power plant. To enable a smooth licensing process and therefore ensure the success of the new build nuclear power plant project, management processes and practices play a significant role. This study contributes to the theoretical understanding of how licensing processes are structured and how they are put into action in practice. The findings clarify the suitability of different licensing processes and their selected licensing steps for SMR licensing. The results combine the most suitable licensing steps into a new licensing process for SMRs. The results are also extended to the concept of licensing management practices and tools.
Resumo:
A new Dam Safety Act (494/2009) came into force on 1st October 2009 and a Government Decree on Dam Safety (319/2010) on 5th May 2010. This Dam Safety Guide replaces the Dam Safety Code of Practice (Publication of the Ministry of Agriculture and Forestry 7/1997), removed from circulation on 1st October 2009. The Dam Safety Guide is not binding on the dam owner; the purpose is to complement and elucidate the relevant law and and decree through examples and descriptions. The Guide takes up questions concerning dam design, for instance hydrological dimensioning and technical safety requirements, dam construction and use, the dam break hazard analysis and the dam owner’s emergency action plan, maintenance, use, monitoring as well as the annual and periodic inspections. Dams are classified according to the hazard they pose into class 1, 2 or 3 dams. The classification is not needed, if, according to the dam safety authority, the dam poses no danger. The owner of a classified dam must prepare a monitoring programme, to be approved by decision of the dam safety authority. To establish the hazard caused by a dam, the owner of a class 1 dam must prepare an analysis of the dam hazard to humans and property as well as to the environment. The dam safety authority may also require a dam break hazard analysis for a dam other than class 1 dam if deemed necessary for classification. The owner of a class 1 dam must prepare a plan of measures in case of emergency or operational failure. The plan shall present the dam owner’s state of preparedness to act on their own initiative in the situations described above. In each case, the rescue authorities make a separate assessment for the need to prepare a plan as set out in the Rescue Act. The dam owner must provide the information specified in the Dam Safety Decree to be entered into the dam safety information system. The dam safety authority and the owner of the dam must keep up-to-date printouts in their own dam safety files from the information system for each dam as well as other important documents connected with dam safety to ensure that these are readily available in case of disturbance.
Resumo:
Tämä työ tutkii ja tarkastelee transitio-kokeilua ravinnetaloudessa. Transitio-kokeilu on toimintatutkimusprojekti, joka toteutetaan systeemisen muutoksen ajattelun mukaisesti alhaalta ylöspäin. Ravinnetalous määritetään tarkemmin työn kautta sekä analysoidaan monitaso-perspektiivin näkökulmasta. Ravinnetalous on terminä varsin tuntematon ja tarvitsee enemmän tunnettavuutta laajemman yleisön edessä. Transitio-areenan ja transitio-visioiden kehittäminen ovat työn keskipisteessä, koska ne ovat tärkeimpiä vaiheita transition alkuvaiheessa. Joukko sidosryhmätoimijoita osallistuu transitio areenaan sekä visioiden jatkokehittelyyn. Visio(t) luodaan ensisijaisesti backcasting-menetelmällä, jota myös täydennetään tavanomaisella ennustamisella. Backcasting- menetelmä on osin osallistava ja siinä käytetään ravinteiden planeettarajoja kvantitatiivisina pääperiaatteina, minkä tuloksena myös visiot ovat osin kvantitatiivisia. Transitio areenan kokoaminen ja fasilitointi aiheuttavat hankalia kysymyksiä, jotka tarvitsevat jatko-tutkimusta. Alhaalta-ylöspäin organisoitu transitio-arena houkuttelee niche-toimijoita, mutta epäonnistuu sitouttamaan julkisen vallan toimijoita. Toimintamallin voimasuhteet, politiikka ja transition vakiinnuttaminen tulisivat olla jatko-toimenpiteinä niin tutkimuksessa kuin toiminnassakin.
Resumo:
The objective of this study is to increase understanding of the nature and role of trust in temporary virtual problem-solving teams engaged in real-life co-creation activities, while much of previous research has been conducted in student settings. The different forms and bases of trust, possible trust barriers and trust building actions, and perceived role of trust in knowledge sharing and collaboration are analyzed. The study is conducted as a qualitative case study in case company. Data includes interviews from 24 people: 13 from 3 different project teams that were going on during the study, 8 from already finalized project teams, and 3 founders of case company. Additional data consists of communication archives from three current teams. The results indicate that there were both knowledge-based and swift trust present, former being based on work-related personal experiences about leaders or other team members, and latter especially on references, disposition to trust and institution-based factors such as norms and rules, as well as leader and expert action. The findings suggest that possible barriers of trust might be related to lack of adaptation to virtual work, unclear roles and safety issues, and nature of virtual communication. Actions that could be applied to enhance trust are for example active behavior in discussions, work-related introductions communicating competence, managerial actions and face-to-face interaction. Finally, results also suggest that trust has a focal role as an enabler of action and knowledge sharing, and coordinator of effective collaboration and performance in temporary virtual problem-solving teams.
Resumo:
As human action, drinking alcohol or smoking cigarettes, for instance, are phenomena that are familiar to most people. We recognise when people use drugs or gamble whether that happens in the television or around us. Sometimes we call these actions addictions. Addictive actions are actions that puzzle us. This puzzlement has raised different kinds of views on addiction that describe the phenomenon in different ways. The proponents of the views pick features that they consider to be sufficient in capturing the phenomenon. The disease view emphasises that addicted individuals are not in control over their own actions, whereas the choice view highlights addicted individuals’ capacity to act according to their own preferences. Some see addiction as a defect of will and addictive action is a manifestation of that. Sometimes they all insist on referring to the same group of people and describing the same actions with seemingly contradictory terms. What happens when an addicted individual acts in accordance with his addiction? This thesis also tries to answer this question and make this kind of action and agency understandable. By showing that these three common views fall short of capturing the phenomenon, I will provide characteristics that jointly suffice for something to be labelled addiction, but which are not, however, individually necessary (or sufficient) for addiction. Those characteristics are strong desire, myopia, biased decision-making, and weakness of will. Furthermore, they should be understood in the framework of diachronic, active agency. They contribute to a view on addictive action that consists of different kinds of actions. Acknowledging the variety of nuanced human action, the understanding of addictive action is increased and this may also be utilised in addiction-related policies and treatment. The emphasis of my study lies specifically on understanding addiction as action by the means of analytical philosophy.
Resumo:
The purpose of this master’s thesis is to gain an understanding of passive safety systems’ role in modern nuclear reactors projects and to research the failure modes of passive decay heat removal safety systems which use phenomenon of natural circulation. Another purpose is to identify the main physical principles and phenomena which are used to establish passive safety tools in nuclear power plants. The work describes passive decay heat removal systems used in AES-2006 project and focuses on the behavior of SPOT PG system. The descriptions of the main large-scale research facilities of the passive safety systems of the AES-2006 power plant are also included. The work contains the calculations of the SPOT PG system, which was modeled with thermal-hydraulic system code TRACE. The dimensions of the calculation model are set according to the dimensions of the real SPOT PG system. In these calculations three parameters are investigated as a function of decay heat power: the pressure of the system, the natural circulation mass flow rate around the closed loop, and the level of liquid in the downcomer. The purpose of the calculations is to test the ability of the SPOT PG system to remove the decay heat from the primary side of the nuclear reactor in case of failure of one, two, or three loops out of four. The calculations show that three loops of the SPOT PG system have adequate capacity to provide the necessary level of safety. In conclusion, the work supports the view that passive systems could be widely spread in modern nuclear projects.