200 resultados para Wind power plants -- Catalonia
Resumo:
Tässä diplomityössä tehtiin Olkiluodon ydinvoimalaitoksella sijaitsevan käytetyn ydinpolttoaineen allasvarastointiin perustuvan välivaraston todennäköisyysperustainen ulkoisten uhkien riskianalyysi. Todennäköisyysperustainen riskianalyysi (PRA) on yleisesti käytetty riskien tunnistus- ja lähestymistapa ydinvoimalaitoksella. Työn tarkoituksena oli laatia täysin uusi ulkoisten uhkien PRA-analyysi, koska Suomessa ei ole aiemmin tehty vastaavanlaisia tämän tutkimusalueen riskitarkasteluja. Riskitarkastelun motiivina ovat myös maailmalla tapahtuneiden luonnonkatastrofien vuoksi korostunut ulkoisten uhkien rooli käytetyn ydinpolttoaineen välivarastoinnin turvallisuudessa. PRA analyysin rakenne pohjautui tutkimuksen alussa luotuun metodologiaan. Analyysi perustuu mahdollisten ulkoisten uhkien tunnistamiseen pois lukien ihmisen aikaansaamat tahalliset vahingot. Tunnistettujen ulkoisten uhkien esiintymistaajuuksien ja vahingoittamispotentiaalin perusteella ulkoiset uhat joko karsittiin pois tutkimuksessa määriteltyjen karsintakriteerien avulla tai analysoitiin tarkemmin. Tutkimustulosten perusteella voitiin todeta, että tiedot hyvin harvoin tapahtuvista ulkoisista uhista ovat epätäydellisiä. Suurinta osaa näistä hyvin harvoin tapahtuvista ulkoisista uhista ei ole koskaan esiintynyt eikä todennäköisesti koskaan tule esiintymään Olkiluodon vaikutusalueella tai edes Suomessa. Esimerkiksi salaman iskujen ja öljyaltistuksen roolit ja vaikutukset erilaisten komponenttien käytettävyyteen ovat epävarmasti tunnettuja. Tutkimuksen tuloksia voidaan pitää kokonaisuudessaan merkittävinä, koska niiden perusteella voidaan osoittaa ne ulkoiset uhat, joiden vaikutuksia olisi syytä tutkia tarkemmin. Yksityiskohtaisempi tietoisuus hyvin harvoin esiintyvistä ulkoisista uhista tarkentaisi alkutapahtumataajuuksien estimaatteja.
Resumo:
Tässä diplomityössä on tutustuttu Lahti Energia Oy:n Heinolan voimalaitoksen energiantuotantoon. Heinolan voimalaitos on vanha, mutta sen pääkattilana toimiva arinakattila on uusittu 2004. Voimalaitoksen toimintaa halutaan kehittää nykyaikaisemmaksi ja energiatehokkaammaksi. Voimalaitoksella on nykyään kolme asiakasta, joista uusin on liittynyt höyryverkkoon vuonna 2011. Työssä on tutkittu miten voimalaitoksen polttoaineiden käyttö muuttuu uuden asiakkaan myötä. Diplomityön teoriaosassa on keskitytty antamaan tietoa erilaisista polttoaineista sekä arinapolttamisesta polttotekniikkana. Työssä on laskettu voimalaitoksen asiakkaiden käyttämä energiavuositasolla, voimalaitoksen kattilahyötysuhde, prosessihyötysuhde ja niiden avulla laitoksen tarvitsema polttoaine-energia vuodessa. Laskelmat antavat hyvän yleisen kuvan voimalaitoksen käytöstä tällä hetkellä. Käyttöennusteen avulla voidaan arvioida myös laitoksen taloudellista tilaa polttoaineseoksen näkökulmasta.
Resumo:
Tässä diplomityössä esitetään selvitys käytössä olevista deterministisistä turvallisuusanalyysimenetelmistä. Deterministisillä turvallisuusanalyyseillä arvioidaan ydinvoimalaitosten turvallisuutta eri käyttötilojen aikana. Voimalaitoksen turvallisuusjärjestelmät mitoitetaan deterministisen turvallisuusanalyysin tulosten perusteella. Deterministiset turvallisuusanalyysit voidaan laatia konservatiivista tai tilastollista menetelmää käyttäen. Konservatiivinen menetelmä pyrkii mallintamaan tarkasteltavan tilanteen siten, että laitoksen todellinen käyttäytyminen on hyvällä varmuudella lievempää kuin analyysitulos. Konservatiivisessa menetelmässä analyysin epävarmuudet huomioidaan konservatiivisilla oletuksilla. Tilastollinen menetelmä perustuu parhaan arvion menetelmään eli pyrkimykseen mallintaa laitoksen käyttäytyminen mahdollisimman todenmukaisesti. Tilastollisessa menetelmässä analyysin epävarmuudet määritetään systemaattisesti tilastomatematiikan keinoin. Työssä painotetaan tilastollisen analyysin epävarmuuksien määritykseen käytettäviä epävarmuustarkastelumenetelmiä. Diplomityön laskennallisessa osassa vertaillaan deterministisen turvallisuusanalyysin laadintaan käytettäviä menetelmiä termohydraulisen turvallisuusanalyysiesimerkin laskennan kautta. Laskennassa tarkasteltavana onnettomuutena on Olkiluoto 3-laitosyksikössä tapahtuva primäärijäähdytepiirin putkikatkosta aiheutuva jäähdytteenmenetysonnettomuus. Lasketun esimerkkitapauksen perusteella tilastollista ja konservatiivista menetelmää voidaan pitää vaihtoehtoisina turvallisuusanalyysin laadintaan. Molemmat analyysit tuottivat hyväksyttäviä ja toisilleen verrannollisia tuloksia, joiden suuruusluokka on sama.
Resumo:
Executive Summary Tuulivoimateollisuus on kasvanut erittäin voimakkaasti 2000-luvulla, ja viime vuonna asennettiin maailmanlaajuisesti ennätysmäärä noin 42 GW uutta tuulivoimakapasiteettia. Kumulatiivinen asennettu kapasiteetti oli vuoden 2011 lopussa noin 241 GW, josta eniten Euroopassa, sitten Kaakkois-Aasiassa, etenkin Kiinassa ja kolmanneksi suurimpana markkina-alueena oli USA. Kiinassa oli eniten asennettua tuulivoimaa, 26 % maailman tuulivoimasta, toisena oli USA, sitten Saksa, Espanja ja Intia. Suurin osa asennetusta koko maailman kapasiteetista on maatuulivoimaa (onshore), merituulivoimaa (offshore) oli asennettu vajaat 4 GW. Teollisuus työllisti arviolta yli 560000 henkilöä maailmanlaajuisesti ja liiketoiminnan arvo oli noin 52 Mrd. euroa (73 Mrd. USD). Tuuliturbiineja oli maailmalla toiminnassa noin 200000 ja niiden keskikoko oli 1,2 MW. Turbiinien koko on tasaisesti kasvanut ja nykyisin suurimmat kaupalliset turbiinit ovat 6-7 MW kokoluokassa. Suomessa oli vuoden 2012 lopussa asennettuna 163 turbiinia yhteisteholtaan 288 MW, joten olemme huomattavasti jäljessä useimpia muita EU maita tuulivoiman hyödyntämisessä. Tuulivoimamarkkinoiden ennakoidaan kasvavan keskimäärin noin 10 % vuosittain, jolloin vuonna 2020 maailmassa olisi asennettuna kapasiteettia noin 900 GW, josta offshore tuulivoimaa 75 GW. Tällöin tuulivoimalla tuotettaisiin noin 8 % sähköntuotannosta, kun arvio vuodelle 2012 on 2,26 %. Nopeinta kasvu olisi Kaakkois-Aasiassa ja Pohjois-Amerikassa, merituulivoimaa sen sijaan asennettaisiin eniten Eurooppaan. Suomen ilmasto- ja energiastrategin mukainen tavoite on 2,5 GW tuulivoimaa vuonna 2020. Moderni turbiini koostuu seuraavista pääkomponenteista: tornista, kolmilapaisesta roottorista, vaihteistosta, generaattorista, ja elektroniikasta. Turbiinien hinta vaihtelee projektista ja käytetystä tekniikasta johtuen, mutta tämän hetkisenä keskiarvona voidaan käyttää noin 1 MEUR / MW hintaa Euroopassa ja Pohjois-Amerikassa. Kiinassa hinta on vähintään yhden kolmasosan halvempi. Turbiinihintojen ennakoidaan halventuvan jo lähivuosien kuluessa jopa 30 % johtuen muun muassa suuruuden ekonomiasta ja kiristyvästä kilpailusta. Kun mukaan lasketaan kaikki kulut, kuten suunnittelu, luvat, turbiinin perustukset ja kaapeloinnit, tulee asennetulle turbiinille keskihinnaksi noin 1,5 MEUR. Merituulivoima voi olla kaksi kertaa kalliimpi investointi. Generaattoreina käytetään tyypillisesti nopeita tai keskinopeita induktio- (DFIG) tai kestomagneettigeneraattoreita (PMSG) ja yleisesti kolmivaihteisia vaihteistoja. Hidasnopeuksisen (PMSG) suoravetogeneraattorin (DD) käyttö on kuitenkin yleistymässä, sillä tällöin vältetään vika-alttiin vaihteiston käyttö. Korkea toimintaluotettavuus on erityisen tärkeä merituulivoimaloissa. Suurimmat 15 turbiinivalmistajaa toimittivat viime vuonna lähes 90 % maailman tuulivoimaloista. Suurin toimija on tanskalainen Vestas, jonka liikevaihto vuonna 2011 oli noin 6 Mrd euroa ja henkilöstöä yli 22000. Suurimpien valmistajien joukossa oli 7 kiinalaista toimijaa, jotka ovat kasvaneet nopeasti viime vuosina. Useimmat turbiinivalmistajat valmistavat joitakin strategisia komponentteja itse tai ostavat ne omaan konserniin kuuluvalta tytäryhtiöltä ja ostavat muut komponentit ja materiaalit sopimusvalmistajilta. Yhtiöiden valmistusstrategiat kuitenkin vaihtelevat ”tehdään kaikki itse” strategiasta pelkkään avainkomponenttien kokoonpanoon ja turbiinin kokonaistoimitukseen. Tyypillisesti turbiinivalmistajia palvelee vakiintunut joukko kansainväliseen toimintaan kyvykkäitä komponenttitoimittajia varatoimittajineen. Kaiken kaikkiaan sekä turbiini- että komponenttivalmistajien kesken on tapahtunut viime vuosikymmenen kuluessa konsolidoitumista. Valmistus on myös globalisoitunut eli avainkomponentit ja etenkin isot komponentit valmistetaan lähellä asiakasta. Toisaalta kiristynyt hintakilpailu on johtanut siihen, että yritykset ovat siirtäneet tuotantoa Kiinaan, joka nykyisin onkin suurin komponenttien valmistusmaa. Alan keskittyminen ja globalisoituminen tullee jatkumaan myös tulevaisuudessa. Suomessa on eri sektoreilta tuulivoiman huippuosaamista, mutta kokonaisvaltaista tuulivoimaklusteria meillä ei ole. Sellaisen rakentaminen tai rakentuminen vie aikaa ja edellyttäisi selkeän veturiyrityksen olemassaoloa. Tuuliturbiinien kokonaistoimituksista yleensä vastaava turbiinivalmistaja olisi luonteva veturiyritys, mutta kotimaiset valmistajat (Winwind ja Mervento) ovat kansainvälisesti pieniä, ja niiden markkina-asema on haastava. Lisäksi Winwind on ajautunut vakavaan taloudelliseen kriisiin (velkojat hakevat yhtiöltä saataviaan käräjäoikeudessa tammikuussa 2013). Kotimaisille turbiinivalmistajille, kuten muillekin tuulivoima-alan toimijoille olisi ensisijaista, että kotimaiset investoinnit käynnistyisivät täysipainoisesti. Tämä tarkoittaisi paitsi liiketoimintamahdollisuuksia, niin kumuloituvaa osaamista ja ennen kaikkea referenssejä kansainvälistä kilpailua silmälläpitäen. Suomalaisten turbiinivalmistajien kilpailukykyisin businessalue löytynee erityisosaamisesta, kuten esimerkiksi arktisesta tuulivoimasektorista. Mahdollisesti liittoutumalla tai jonkin johtavan turbiinivalmistajan tytäryrityksenä suomalainen niche markkinoille erikoistunut turbiinivalmistus voisi menestyä tulevaisuuden kovenevassa kilpailussa. Kilpailu päämarkkinoilla johtavien turbiinivalmistajien kanssa tuskin tuo menestystä, sillä näiden resurssit ja referenssit ovat ylivertaiset ja osaaminenkin osin suomalaisia edellä. Suomalaista huippuosaamista edustavat muun muassa ABB, The Switch, Vacon, Vaisala, Prysmian sekä Moventas. Yhtiöiden markkina-alue on globaali ja etenkin ABB:n ja Prysmianin resurssit mittavat. Yhtiöillä on edellytykset menestyä jatkossakin kansainvälisesti tuulivoimaliiketoiminnan komponenttien ja systeemien toimittajina. Moventaksen haasteena on yrityksen taloudellinen tilanne ja kilpailukyky markkinoilla (koko henkilöstö lomautetaan määräajaksi keväällä 2013). Muun muassa paperikonevalmistuksen ja meriteollisuuden johdolla Suomeen on syntynyt vahva konepajaosaaminen ja alihankintaverkosto. Esimerkiksi Holming, Componenta, Häkkinen Group ja Metso Foundries palvelevat jo tuulivoimateollisuutta. Osa yhtiöistä toimii kansainvälisesti ja niillä on mahdollisuus jatkossakin palvella tuulivoimateollisuutta, etenkin Suomessa ja lähialueilla. Komponenttitoimittajien ja alihankkijoiden kansainvälistymisen haasteina ovat muun muassa Suomen syrjäinen sijainti Euroopan päämarkkinoilta ja päämiesten jo osin vakiintuneet toimittajaverkostot. Tuulivoiman suunnittelu ja konsultointi sekä käyttö ja kunnossapito tarjoavat suomalaisille yhtiöille liiketoimintamahdollisuuksia Suomessa ja lähialueilla. Merkittävää uutta potentiaalia edustaa telakkateollisuus, ennen muuta STX Finland. STX konsernissa osataan erikoislaivojen tekeminen, konserni omistaa jo turbiinivalmistajan ja konsernin strategiana on tulla merkittäväksi tuulivoimatoimijaksi. Offshore perustukset ja tornit voisivat luontevasti olla omaa tuotantoa oman turbiinivalmistuksen, tuulipuistojen käytön ja kunnossapidon sekä erikoislaivojen ohella. STX Finlandilla olisi potentiaalia toimia suomalaisen tuulivoimateollisuuden veturiyrityksenä. Yhtiön rahoitustilanne ja kilpailukyky ovat kuitenkin tällä hetkellä haastavat. Rautaruukilla on potentiaalia toimittaa muun muassa ristikkorakenteisia torneja ja Parmalla hybriditorneja tuulivoimateollisuudelle. Suomalaisen tuulivoimaosaamisen ja työllisyyden kannalta keskeistä on, että Suomen ilmasto- ja energiastrategian mukaiset tuulivoimainvestoinnit saataisiin viipymättä käyntiin ja investointiympäristö säilyisi suotuisana ja ennustettavana. Tuulivoiman syöttötariffi tukee tuulivoiman taloudellista kannattavuutta lähitulevaisuudessa, mutta tuulivoimarakentamisen rajoituksia ja esteitä tulee myös merkittävästi purkaa tai lieventää.”Työpaikkoja syntyy niihin maihin joissa tuulivoimaa rakennetaan”. Tuulivoima työllistää paitsi suunnittelu- ja rakentamisvaiheessa, niin erityisesti laitosten 20-30 vuoden käyttö- ja kunnossapitoaikana. Teknologiateollisuuden (2012) positiivisen kasvuskenaarion mukaan tuulivoimateollisuus voisi työllistää jopa 25-30000 henkilöä vuonna 2020 nykyisten noin 2000 sijasta ja alan liikevaihto voisi olla jopa 12-14 Mrd. euroa. Tällainen kasvuskenaario sisältää kyllä merkittäviä epävarmuustekijöitä ja Tarastin (2012) selvitys arvioikin kasvun ja työllisyyden kehittyvän kasvuskenaariossakin maltillisemmin. Todennäköisimmät menestysmahdollisuudet ovat alalla jo merkittävässä asemassa olevilla resursseiltaan vahvoilla ja kansainvälisillä yrityksillä. Monialayritykset kestävät pelkästään tuulivoima-alaan keskittyneitä yrityksiä paremmin alalle tyypilliset liiketoiminnan vaihtelut. Erikoistuminen ja uudet radikaalit innovaatiot voivat kuitenkin tuoda tuulivoimaliiketoimintaan täysin uusia toimijoita tai muuttaa nykyisten yritysten kilpailuasetelmia. Kaupallisesti menestyviä uusia keksintöjä harvoin kuitenkaan syntyy ilman panostuksia. Ensiarvoisen tärkeää olisi määritellä kansallinen tahtotila, millä resurssein ja mihin tuulivoimateollisuuden sektoreihin halutaan panostaa, ja kohdentaa resurssit siten, että alan yrityksillä, tutkimuslaitoksilla ja muilla toimijoilla olisi parhaat edellytykset kehittää kilpailukykyisiä tuotteita, palveluita ja systeemeitä. Potentiaalisten uusien teknologioiden ja suomalaisten toimijoiden syvällisempi tarkastelu voisikin olla mielenkiintoisen jatkotutkimuksen aihe.
Resumo:
Tässä työssä on tarkasteltu Suomessa käytössä olevien ydinvoimalaitosten vuosihuoltojen aikaista käyttöturvallisuutta yleisesti sekä arvioitu voimayhtiöiden vuosihuoltojen aikaisten häiriö- ja hätätilanteiden varalta laatimien ohjeiden kattavuutta. Kattavuuden arviointi suoritettiin tarkastelemalla seisokkitiloja käsitteleviä todennäköisyysperusteista riskianalyysia (PRA), lopullista turvallisuusselostetta (FSAR) ja turvallisuusteknisiä käyttöehtoja (TTKE). PRA:n mukaan Olkiluodon 1 ja 2 laitosyksiköiden sydänvauriotaajuudesta noin 25 % liittyy vuosihuollon aikaisiin alkutapahtumiin. Loviisan laitosyksiköillä vastaava osuus on noin 61 %. Merkittävimmät vuosihuoltojen aikaiset alkutapahtumat sydänvaurioriskin kannalta olivat Olkiluodossa tulipalot, jäähdytteen menetykset ja jälkilämmön poiston menetykset sekä Loviisassa raskaan taakan pudotukset, booripitoisuuden laimeneminen ja öljyonnettomuudet. Saatujen tulosten perusteella voitiin todeta, että voimayhtiöiden laatimat häiriö- ja hätätilanneohjeet olivat pääosiltaan asianmukaiset ja ne kattoivat hyvin erilaiset seisokin aikaiset alkutapahtumat. Tarkastelun perusteella tehtiin ohjeistoon muutamia parannusehdotuksia. Seisokkitiloja koskevat TTKE ja FSAR havaittiin asianmukaisiksi molemmilla tarkastelluilla laitoksilla.
Resumo:
Oxy-fuel combustion in a circulating fluidized bed (CFB) boiler appears to be a promising option for capturing CO2 in power plants. Oxy-fuel combustion is based on burning of fuel in the mixture of oxygen and re-circulated flue gas instead of air. Limestone (CaCO3) is typically used for capturing of SO2 in CFB boilers where limestone calcines to calcium oxide (CaO). Because of high CO2 concentration in oxy-fuel combustion, calcination reaction may be hindered or carbonation, the reverse reaction of calcination, may occur. Carbonation of CaO particles can cause problems especially in the circulation loop of a CFB boiler where temperature level is lower than in the furnace. The aim of the thesis was to examine carbonation of CaO in a fluidized bed heat exchanger of a CFB boiler featuring oxy-fuel combustion. The calculations and analyzing were based on measurement data from an oxy-fuel pilot plant and on 0-dimensional (0D) gas balance of a fluidized bed heat exchanger. Additionally, the objective was to develop a 1-dimensional (1D) model of a fluidized bed heat exchanger by searching a suitable pre-exponential factor for a carbonation rate constant. On the basis of gas measurement data and the 0D gas balance, it was found that the amount of fluidization gas decreased as it flew through the fluidized bed heat exchanger. Most likely the reason for this was carbonation of CaO. It was discovered that temperature has a promoting effect on the reaction rate of carbonation. With the 1D model, a suitable pre-exponential factor for the equation of carbonation rate constant was found. However, during measurements there were several uncertainties, and in the calculations plenty of assumptions were made. Besides, the temperature level in the fluidized bed heat exchanger was relatively low during the measurements. Carbonation should be considered when fluidized bed heat exchangers and the capacity of related fans are designed for a CFB boiler with oxy-fuel combustion.
Resumo:
Työssä vertaillaan kestomagneettitahtigeneraattorin kannattavuutta suhteessa perinteiseen erillismagnetoituun tahtigeneraattoriin. Sähkön markkinahinnan nousu tulevaisuudessa, pakottaa etsimään uusia ratkaisuja jo olemassa olevien vesivoimalaitosten hyötysuhteen parantamiseksi. Hyötysuhteeseen vaikuttavat laitoksen mekaaniset ja sähköiset häviöt. Työn kohteena olevan vesivoimalaitoksen saneeraus on ajankohtainen lähivuosina, ja samalla avautuu mahdollisuus vaihtaa myös vanha erillismagnetoitu tahtigeneraattori uudempaan kestomagneeteilla toteutettuun. Työssä tarkastellaan kalliimman investoinnin kannattavuutta suhteessa kasvavaan energian tuotantoon. Tarkastelujaksolla lisääntyneen vuosituotannon osuuden rahallista arvoa verrataan investointihetken kustannuksiin. Työn edetessä havaittiin, että virtaamamäärän lisäyksellä on vahva rooli kannattavuutta laskettaessa. Pienillä virtaamilla ei saavuteta riittävää tuottoa ilman mekaanisen hyötysuhteen parantamista. Pelkästään generaattorityypin vaihto ei tällä hetkellä kannata, kun nykyisellä generaattorilla on käyttöaikaa jäljellä kymmeniä vuosia. Tilanne voi muuttua kannattavaksi esimerkiksi äkillisen generaattorivaurion myötä.
Resumo:
Lempäälään aiotaan rakentaa uusi kaukolämpölaitos, jossa polttoaineena käytettäisiin haketta. Nykyään Lempäälässä tuotetaan kaukolämpöä maakaasulla, jonka käyttämisestä halutaan siirtyä käyttämään lähialueilta saatavaa biopolttoainetta. Tässä työssä halutaan selvittää, mitä hyötyjä saataisiin hakkeen koneellisesta kuivauksesta. Työn toisena tavoitteena on suunnitella ja pohtia biopolttoaineterminaalin rakentamista sekä käsitellä hakkeen varastointia yleensä. Työssä tutustutaan hakkeeseen aiheesta kertovan kirjallisuuden avulla. Työssä on myös laskettu hakkeen kuivauksesta saatavia hyötyjä hakkeen lämpöarvoon sekä energiatiheyteen. Erityisesti perehdytään metsätähdehakkeeseen, rankahakkeeseen, kuorihakkeeseen sekä sahanpuruun. Laskelmien tuloksista on havaittu, että suurin hyöty hakkeen energiatiheyden parantumisessa saadaan kun hake kuivataan 35 % kosteuspitoisuuteen. Tämän jälkeen energiatiheyden paraneminen tapahtuu hitaammin. Hakkeen kuivauksesta saadaan myös muita hyötyjä kuin energiatiheyden paraneminen. Kuivan hakkeen käsittelyn ja varastoinnin on havaittu olevan vaivattomampaa kuin märän hakkeen. Biopolttoaineterminaalin ja voimalaitoksen tulisi sijaita rinnakkain, jotta hakkeen kuivauksesta saadaan mahdollisimman kustannustehokasta. Näin ollen syntyisi myös säästöjä hakkeen kuljetuksen suhteen. Biopolttoaineterminaalin rakentamista varten tarvittaisiin tilaa alustavien laskelmien perusteella noin yksi hehtaari. Työssä on myös laskettu biopolttoaineterminaalin rakentamisesta aiheutuvia kustannuksia sekä hakkeen kuljetuksesta koituvia logistiikka kustannuksia. Haketerminaalin ja voimalaitoksen sijaintia Lempäälässä on myös kartoitettu.
Resumo:
Ilmastonmuutos ja fossiilisten polttoaineiden ehtyminen ovat edesauttaneet uusiutuvien energialähteiden tutkimusta huomattavasti. Lisäksi alati kasvava sähköenergian tarve lisää hajautetun sähköntuotannon ja vaihtoehtoisten energialähteiden kiinnostavuutta. Yleisimpiä hajautetun sähköntuotannon energialähteitä ovat tuulivoima, aurinkovoima ja uutena tulokkaana polttokennot. Polttokennon kytkeminen sähköverkkoon vaatii tehoelektroniikkaa, ja yleensä yksinkertaisessa polttokennosovelluksessa polttokenno kytketään galvaanisesti erottavan yksisuuntaisen DC/DC-hakkurin ja vaihtosuuntaajan kanssa sarjaan. Polttokennon rinnalla voidaan käyttää akkua tasaamaan polttokennon syöttämää jännitettä, jolloin akun ja polttokennon väliin tarvitaan kaksisuuntainen DC/DC-hakkuri, joka pystyy siirtämään energiaa molempiin suuntiin. Tässä diplomityössä on esitetty kaksisuuntaisen DC/DC-hakkurin tilayhtälökeskiarvoistusmenetelmään perustuva malli sekä mallin perusteella toteutettu virtasäätö. Tutkittava hakkuritopologia on kokosilta-tyyppinen boost-hakkuri, ja säätömenetelmä keskiarvovirtasäätö. Työn tuloksena syntyi tilayhtälömalli kaksisuuntaiselle FB boost -hakkurille sekä sen tulokelan virran säätämiseen soveltuva säädin. Säädin toimii normaalitilanteissa hyvin, mutta erikoistilanteissa, kuten hakkurin tulojännitteen äkillisessä muutostilanteessa, vaadittaisiin tehokkaampi säädin, jolla saavutettaisiin nopeampi nousuaika ilman ylitystä ja oskillointia.
Resumo:
Today the limitedness of fossil fuel resources is clearly realized. For this reason there is a strong focus throughout the world on shifting from fossil fuel based energy system to biofuel based energy system. In this respect Finland with its proven excellent forestry capabilities has a great potential to accomplish this goal. It is regarded that one of the most efficient ways of wood biomass utilization is to use it as a feedstock for fast pyrolysis process. By means of this process solid biomass is converted into liquid fuel called bio-oil which can be burnt at power plants, used for hydrogen generation through a catalytic steam reforming process and as a source of valuable chemical compounds. Nowadays different configurations of this process have found their applications in several pilot plants worldwide. However the circulating fluidized bed configuration is regarded as the one with the highest potential to be commercialized. In the current Master’s Thesis a feasibility study of circulating fluidized bed fast pyrolysis process utilizing Scots pine logs as a raw material was conducted. The production capacity of the process is 100 000 tonne/year of bio-oil. The feasibility study is divided into two phases: a process design phase and economic feasibility analysis phase. The process design phase consists of mass and heat balance calculations, equipment sizing, estimation of pressure drops in the pipelines and development of plant layout. This phase resulted in creation of process flow diagrams, equipment list and Microsoft Excel spreadsheet that calculates the process mass and heat balances depending on the bio-oil production capacity which can be set by a user. These documents are presented in the current report as appendices. In the economic feasibility analysis phase there were at first calculated investment and operating costs of the process. Then using these costs there was calculated the price of bio-oil which is required to reach the values of internal rate of return of 5%, 10%, 20%, 30%, 40%, and 50%.
Resumo:
Recently, Small Modular Reactors (SMRs) have attracted increased public discussion. While large nuclear power plant new build projects are facing challenges, the focus of attention is turning to small modular reactors. One particular project challenge arises in the area of nuclear licensing, which plays a significant role in new build projects affecting their quality as well as costs and schedules. This dissertation - positioned in the field of nuclear engineering but also with a significant section in the field of systems engineering - examines the nuclear licensing processes and their suitability for the characteristics of SMRs. The study investigates the licensing processes in selected countries, as well as other safety critical industry fields. Viewing the licensing processes and their separate licensing steps in terms of SMRs, the study adopts two different analysis theories for review and comparison. The primary data consists of a literature review, semi-structured interviews, and questionnaire responses concerning licensing processes and practices. The result of the study is a recommendation for a new, optimized licensing process for SMRs. The most important SMR-specific feature, in terms of licensing, is the modularity of the design. Here the modularity indicates multi-module SMR designs, which creates new challenges in the licensing process. As this study focuses on Finland, the main features of the new licensing process are adapted to the current Finnish licensing process, aiming to achieve the main benefits with minimal modifications to the current process. The application of the new licensing process is developed using Systems Engineering, Requirements Management, and Project Management practices and tools. Nuclear licensing includes a large amount of data and documentation which needs to be managed in a suitable manner throughout the new build project and then during the whole life cycle of the nuclear power plant. To enable a smooth licensing process and therefore ensure the success of the new build nuclear power plant project, management processes and practices play a significant role. This study contributes to the theoretical understanding of how licensing processes are structured and how they are put into action in practice. The findings clarify the suitability of different licensing processes and their selected licensing steps for SMR licensing. The results combine the most suitable licensing steps into a new licensing process for SMRs. The results are also extended to the concept of licensing management practices and tools.
Resumo:
Tässä diplomityössä esitetään voimalaitoksen kanavien kannakkeiden rakennesuunnittelussa tarvittavat laskentamenetelmät. Työssä rakenteiden suunnitteluun ja mitoitukseen käytetään pääasiassa Eurokoodi 3 teräsrakenteiden suunnittelustandardin mukaista rajatilamitoitusta. Lisäksi kehitetään mitoitustyökaluja tärkeimpien kanavakannakkeiden suunnitteluun. Toteutettujen mitoitustyökalujen toiminta verifioidaan lujuusopin elementtimenetelmällä tehtävin tarkistuslaskelmin. Laskentatyökalujen analyyttisen ratkaisun verifioitiin olevan varmalla puolella kaikissa tutkituissa ilmiöissä. Työssä verifioituja menetelmiä voidaan soveltaa myös muiden vastaavien rakenteiden mitoittamiseen. Työssä luotujen laskentatyökalujen sisältämät laskentamenetelmät mahdollistavat monenlaisten rakenteiden vaatimustenmukaisen suunnittelun.
Resumo:
The aim of this thesis is to study different methods to increase the energy production of recovery boilers. This improvement is encouraged by the current energy policy and the rapid rise in energy prices, especially in electricity. In addition, the energy efficiency of the power plants is intended to be improved. There are several methods to increase the energy production. The methods taken into more accurate study are lower pressure steam for soot blowing and flue gas coolers. Energy balances are made for these two cases to check a plausible addition of power generation of turbo-generator of the steam turbine. Also, the viability issues are studied. Solvo Power Plant Simulation program is used for the energy balance research. Two case power plants are simulated to solve the balances. To solve the addition of power generation with the flue gas coolers, basic balance calculation is performed. The viabilities are also taken into account, especially the payback times of these alternatives. On the basis of the results, installing the system to the process is viable in both cases. By installing the lowest possible pressure steam system for the soot blowing, the advantages are the most significant. The investment costs are the highest but the payback time is less than 1,5 years and the profit in the next 20 years is the greatest. In the case of flue gas coolers, the results did not entirely agree with past studies. Nevertheless, installing the flue gas coolers into the process also seems to be significant and profitable.
Resumo:
Tuulivoima on Euroopassa nopeimmin kasvava energian tuotantomuoto. Tuulivoimateollisuuden arvioidaan kasvavan Suomessa huomattavasti lähivuosien aikana ennakoidun syöttötariffipäätöksen myötä, jolloin kilpailu alalla tulee kasvamaan. Tavoitteena oli kehittää tuulivoimalan tornin valmistusta Levator Oy:ssä hitsaustuotantoa tehostamalla ja tuotannon ohjattavuutta parantamalla. Kehitystyöhön kuului toisen hitsauslinjan käyttöönoton suunnittelu ja ohjeiston laatiminen työnjohdolle. Toisen hitsauslinjan käyttöönoton suunnittelun tarkoituksena oli suunnitella muutokset nykyiseen tuotantoon uuden linjan käyttöönoton mahdollistamiseksi. Suunnittelu aloitettiin valitsemalla hitsausprosessit, jonka jälkeen suunniteltiin laitetarpeet työvaihe-analyysien pohjalta. Tuotantolayout muutettiin nykyisestä funktionaalisesta tuotannosta tuotantosoluista koostuvaksi tuotantolinjaksi, jolloin materiaalien virtautus parani huomattavasti. Tuotannon ohjaustavaksi valittiin kapeikko-ohjaus. Ohjeiston laatimisen tarkoituksena oli kerätä ja dokumentoida kaikki tuotannossa tarvittava tieto. Ohjeiston sisältää laadunohjaus, materiaalivirtojen ohjaus ja työnohjaus osiot, joiden tarkoituksena on helpottaa työnjohtamista. Ohjeisto määrittelee yhtenäiset tuotannon toimintatavat, jolloin tuotannon ohjattavuus helpottuu. Tavoitteet täyttyivät, kun toisen tuotantolinjan käyttöönoton vaatimat muutokset aloitettiin suunnitelmien mukaisesti syyskuussa 2009. Ohjeiston sisältö saatiin määriteltyä ja eri osioiden pilotit saatiin valmiiksi joulukuun aikana. Tuotannon ohjattavuus kehittyi huomattavasti ja samalla tuottavuus parani merkittävästi.