16 resultados para lignocellulosic compounds


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Haihtuvien orgaanisten yhdisteiden muodostuminen kuivikkeissa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orgaanisten yhdisteiden negatiivinen retentio nanosuodatuksessa on ilmiö, jota eiole kovin paljon tutkittu. Negatiivisen retentioon vaikuttavat syyt tai tekijäteivät ole kovin hyvin tiedossa. Erotusmenetelmänä negatiivinen retentio voi olla käyttökelpoinen tietyissä sovelluksissa. Työn kirjallisuusosa käsittelee nanosuodatuksen erotusmekanismeja ja retentioon vaikuttavia tekijöitä. Myös joitakin malleja on esitetty. Nanosuodatus on monimutkainen prosessi, josta ei voida löytää vain yhtä erotusmekanismia tai retentioon vaikuttavaa tekijää. Prosessit ovat kokonaisuuksia, joissa erottumiseen vaikuttavat syöttöliuoksen, erotettavan komponentin ja kalvon ominaisuudet, ja niiden väliset vuorovaikutukset. Työn kokeellisessa osassa koottiin mahdollisimman paljon esimerkkejä, joissa monosakkaridien negatiivinen retentio ilmenee. Muita orgaanisia ja epäorgaanisia yhdisteitä käytettiin 'häiriöyhdisteinä' syöttöliuoksessa monosakkaridien kanssa. Kokeet suoritettiin kahdella laboratoriomittakaavan suodatuslaitteella käyttäen kahta kaupallista nanosuodatuskalvoa. Negatiivinen retentio ilmeni useissa tapauksissa. Permeaattivuon ja 'häiriöyhdisteiden' pitoisuuksien havaittiin vaikuttavan voimakkaasti negatiivisen retention ilmenemiseen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Substances emitted into the atmosphere by human activities in urban and industrial areas cause environmental problems such as air quality degradation, respiratory diseases, climate change, global warming, and stratospheric ozone depletion. Volatile organic compounds (VOCs) are major air pollutants, emitted largely by industry, transportation and households. Many VOCs are toxic, and some are considered to be carcinogenic, mutagenic, or teratogenic. A wide spectrum of VOCs is readily oxidized photocatalytically. Photocatalytic oxidation (PCO) over titanium dioxide may present a potential alternative to air treatment strategies currently in use, such as adsorption and thermal treatment, due to its advantageous activity under ambient conditions, although higher but still mild temperatures may also be applied. The objective of the present research was to disclose routes of chemical reactions, estimate the kinetics and the sensitivity of gas-phase PCO to reaction conditions in respect of air pollutants containing heteroatoms in their molecules. Deactivation of the photocatalyst and restoration of its activity was also taken under consideration to assess the practical possibility of the application of PCO to the treatment of air polluted with VOCs. UV-irradiated titanium dioxide was selected as a photocatalyst for its chemical inertness, non-toxic character and low cost. In the present work Degussa P25 TiO2 photocatalyst was mostly used. In transient studies platinized TiO2 was also studied. The experimental research into PCO of following VOCs was undertaken: - methyl tert-butyl ether (MTBE) as the basic oxygenated motor fuel additive and, thus, a major non-biodegradable pollutant of groundwater; - tert-butyl alcohol (TBA) as the primary product of MTBE hydrolysis and PCO; - ethyl mercaptan (ethanethiol) as one of the reduced sulphur pungent air pollutants in the pulp-and-paper industry; - methylamine (MA) and dimethylamine (DMA) as the amino compounds often emitted by various industries. The PCO of VOCs was studied using a continuous-flow mode. The PCO of MTBE and TBA was also studied by transient mode, in which carbon dioxide, water, and acetone were identified as the main gas-phase products. The volatile products of thermal catalytic oxidation (TCO) of MTBE included 2-methyl-1-propene (2-MP), carbon monoxide, carbon dioxide and water; TBA decomposed to 2-MP and water. Continuous PCO of 4 TBA proceeded faster in humid air than dry air. MTBE oxidation, however, was less sensitive to humidity. The TiO2 catalyst was stable during continuous PCO of MTBE and TBA above 373 K, but gradually lost activity below 373 K; the catalyst could be regenerated by UV irradiation in the absence of gas-phase VOCs. Sulphur dioxide, carbon monoxide, carbon dioxide and water were identified as ultimate products of PCO of ethanethiol. Acetic acid was identified as a photocatalytic oxidation by-product. The limits of ethanethiol concentration and temperature, at which the reactor performance was stable for indefinite time, were established. The apparent reaction kinetics appeared to be independent of the reaction temperature within the studied limits, 373 to 453 K. The catalyst was completely and irreversibly deactivated with ethanethiol TCO. Volatile PCO products of MA included ammonia, nitrogen dioxide, nitrous oxide, carbon dioxide and water. Formamide was observed among DMA PCO products together with others similar to the ones of MA. TCO for both substances resulted in the formation of ammonia, hydrogen cyanide, carbon monoxide, carbon dioxide and water. No deactivation of the photocatalyst during the multiple long-run experiments was observed at the concentrations and temperatures used in the study. PCO of MA was also studied in the aqueous phase. Maximum efficiency was achieved in an alkaline media, where MA exhibited high fugitivity. Two mechanisms of aqueous PCO – decomposition to formate and ammonia, and oxidation of organic nitrogen directly to nitrite - lead ultimately to carbon dioxide, water, ammonia and nitrate: formate and nitrite were observed as intermediates. A part of the ammonia formed in the reaction was oxidized to nitrite and nitrate. This finding helped in better understanding of the gasphase PCO pathways. The PCO kinetic data for VOCs fitted well to the monomolecular Langmuir- Hinshelwood (L-H) model, whereas TCO kinetic behaviour matched the first order process for volatile amines and the L-H model for others. It should be noted that both LH and the first order equations were only the data fit, not the real description of the reaction kinetics. The dependence of the kinetic constants on temperature was established in the form of an Arrhenius equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis a total of 86 compounds containing the hetero atoms oxygen and nitrogen were studied under electron ionization mass spectrometry (EIMS). These compounds are biologically active and were synthesized by various research groups. The main attention of this study was paid on the fragmentations related to different tautomeric forms of 2- phenacylpyridines, 2-phenacylquinolines, 8-aryl-3,4-dioxo-2H,8H-6,7-dihydroimidazo- [2,1-c][1,2,4]triazines and aryl- and benzyl-substituted 2,3-dihydroimidazo[1,2-a]pyrimidine-5,7-(1H,6H)-diones. Also regio/stereospecific effects on fragmentations of pyrrolo- and isoindoloquinazolinones and naphthoxazine, naphthpyrrolo-oxazinone and naphthoxazino-benzoxazine derivatives were screened. Results were compared with NMR data, when available. The first part of thesis consists of theory and literature review of different types of tautomerism and fragmentation mechanisms in EIMS. The effects of tautomerism in biological systems are also briefly reviewed. In the second part of the thesis the own results of the author, based on six publications,are discussed. For 2-phenacylpyridines and 2-phenacylquinolines the correlation of different Hammett substituent constants to the relative abundances (RA) or total ion currents (% TIC) of selected ions were investigated. Although it was not possible to assign most of the ions formed unambiguously to the different tautomers, the linear fits of their RAs and % TICs can be related to changing contributions of different tautomeric forms. For dioxoimidazotriazines and imidazopyrimidinediones the effects of substituents were rather weak. The fragmentations were also found useful for obtaining structural information. Some stereoisomeric pairs of pyrrolo- and isoindoloquinazolines and regiomeric pairs of naphtoxazine derivatives showed clear differences in thir mass spectra. Some mechanisms are suggested for their fragmentations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astringency is traditionally thought to be induced by plant tannins in foods. Because of this current research concerning the mechanism of astringency is focused on tannin‐protein interactions and thus on precipitation, which may be perceived by mechanoreceptors. However, astringency is elicited by a wide range of different phenolic compounds, as well as, some non‐phenolic compounds in various foods. Many ellagitannins or smaller compounds that contribute to astringent properties do not interact with salivary proteins and may be directly perceived through some receptors. Generally, the higher degree of polymerization of proanthocyanidins can be associated with more intense astringency. However, the astringent properties of smaller phenolic compounds may not be directly predicted from the structure of a compound, although glycosylation has a significant role. The astringency of organic acids may be directly linked to the perception of sourness, and this increases along with decreasing pH. Astringency can be divided into different sub‐qualities, including even other qualities than traditional mouth‐drying, puckering or roughing sensations. Astringency is often accompanied by bitter or sour or both taste properties. The different sub‐qualities can be influenced by different astringent compounds. In general, the glycolysation of the phenolic compound results in more velvety and smooth mouthdrying astringency. Flavonol glycosides and other flavonoid compounds and ellagitannins contribute to this velvety mouthdrying astringency. Additionally, they often lack the bitter properties. Proanthocyanidins and phenolic acids elicit more puckering and roughing astringency with some additional bitter properties. Quercetin 3‐O‐rutinoside, along with other quercetin glycosides, is among the key astringent compounds in black tea and red currants. In foods, there are always various other additional attributes that are perceived at the same with astringency. Astringent compounds themselves may have other sensory characteristics, such as bitter or sour properties, or they may enhance or suppress other sensory properties. Components contributing to these other properties, such as sugars, may also have similar effects on astringent sensations. Food components eliciting sweetness or fattiness or some polymeric polysaccharides can be used to mask astringent subqualities. Astringency can generally be referred to as a negative contributor to the liking of various foods. On the other hand, perceptions of astringent properties can vary among individuals. Many genetic factors that influence perceptions of taste properties, such as variations in perceiving a bitter taste or variations in saliva, may also effect the perception of astringency. Individuals who are more sensitive to different sensations may notice the differences between astringent properties more clearly. This may not have effects on the overall perception of astringency. However, in many cases, the liking of astringent foods may need to be learned by repetitive exposure. Astringency is often among the key sensory properties forming the unique overall flavour of certain foods, and therefore it also influences whether or not a food is liked. In many cases, astringency may be an important sub‐property suppressed by other more abundant sensory properties, but it may still have a significant contribution to the overall flavour and thus consumer preferences. The results of the practical work of this thesis show that the astringent phenolic compounds are mostly located in the skin fractions of black currants, crowberries and bilberries (publications I–III). The skin fractions themselves are rather tasteless. However, the astringent phenolic compounds can be efficiently removed from these skin fractions by consecutive ethanol extractions. Berries contain a wide range of different flavonol glycosides, hydroxycinnamic acid derivatives and anthocyanins and some of them strongly contribute to the different astringent and bitterness properties. Sweetness and sourness are located in the juice fractions along with the majority of sugars and fruit acids. The sweet and sour properties of the juice may be used to mask the astringent and bitterness properties of the extracts. Enzymatic treatments increase the astringent properties and fermented flavour of the black currant juice and decrease sweetness and freshness due to the effects on chemical compositions (IV). Sourness and sweetness are positive contributors to the liking of crowberry and bilberry fractions, whereas bitterness is more negative (V). Some astringent properties in berries are clearly negative factors, whereas some may be more positive. The liking of berries is strongly influenced by various consumer background factors, such as motives and health concerns. The liking of berries and berry fractions may also be affected by genetic factors, such as variations in the gene hTAS2R38, which codes bitter taste receptors (V).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Andean area of South America is a very important center for the domestication of food crops. This area is the botanical origin of potato, peanut and tomato. Less well- known crops, such as quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus), were also domesticated by ancient Andean farmers. These crops have a long history of safe use with the local populations and they have contributed to the nutrition and wellbeing of the people for centuries. Several studies have reported the nutritional value of Andean grains. They contain proteins with a balanced essential amino acid composition that are of high biological value, good quality oil and essential minerals, for example iron, calcium and zinc. They are potential sources of bioactive compounds such as polyphenols and dietary fiber. The main objective of the practical work was to assess the nutritional value of Andean native grains with a special emphasis on the bioactive components and the impact of processing. The compounds studied were phenolic acids, flavonoids, betalains and dietary fiber. The radical scavenging activity was measured as well. Iron, calcium and zinc content and their bioavailability were analyzed as well. The grains were processed by extrusion with the aim to study the effect of processing on the chemical composition. Quinoa, kañiwa and kiwicha are very good sources of dietary fiber, especially of insoluble dietary fiber. The phenolic acid content in Andean crops was low compared with common cereals like wheat and rye, but was similar to levels found in oat, barley, corn and rice. The flavonoid content of quinoa and kañiwa was exceptionally high. Kiwicha did not contain quantifiable amounts of these compounds. Only one variety of kiwicha contained low amounts of betalains. These compounds were not detected in kañiwa or quinoa. Quinoa, kañiwa and kiwicha are good sources of minerals. Their calcium, zinc and iron content are higher than the content of these minerals in common cereals. In general, roasting did not affect significantly mineral bioavailability. On the contrary, in cooked grains, there was an increase in bioavailability of zinc and, in the case of kañiwa, also in iron and calcium bioavailability. In all cases, the contents of total and insoluble dietary fiber decreased during the extrusion process. At the same time, the content of soluble dietary fiber increased. The content of total phenolics, phytic acid and the antioxidant activity decreased in kiwicha varieties during the extrusion process. In the case of quinoa, the content of total phenolic compounds and the radical scavenging activity increased during the extrusion process in all varieties. Taken together, the studies presented here demonstrate that the Andean indigenous crops have excellent potential as sources of minerals, flavonoids and dietary fiber. Further studies should be conducted to characterize the phenolic compound and antioxidant composition in processed grains and end products. Quinoa, kañiwa and kiwicha grains are consumed widely in Andean countries but they also have a significant, worldwide potential as a new cultivated crop species and as an imported commodity from South America. Their inclusion in the diet has the potential to improve the intake of minerals and health-promoting bioactive compounds. They may also be interesting raw materials for special dietary foods and functional foods offering natural sources of specific health-promoting components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lignoselluloosasta koostuvasta biomassasta valmistetaan hydrolysoimalla sokereita, jotka jatkojalostetaan fermentoimalla bioetanoliksi. Bioetanolia käytetään fossiilisten polttoaineiden korvaajana esimerkiksi ajoneuvoissa. Bioetanolin valmistuksessa pyritään mahdollisimman hyvään saantoon, jotta sen valmistus olisi taloudellisesti kannattavaa. Hydrolyysin aikana syntyy sokerien lisäksi orgaanisia happoja, furaanin johdannaisia sekä fenolisia yhdisteitä. Yleisimpiä syntyviä yhdisteitä ovat muun muassa etikkahappo, furfuraali ja hydroksimetyylifurfuraali. Nämä yhdisteet haittaavat sokerien fermentointiprosessia ja pienentävät etanolin saantoa. Fermentointiprosessia haittaavien yhdisteiden poistoon hydrolysaattiliuoksesta voidaan käyttää esimerkiksi haihdutusta, membraanierotusta, adsorptiota, saostusta, sekä uuttoa. Tämän työn tarkoituksena oli tutkia leikkaussekoittimen soveltuvuutta biomassahydrolysaatin epäpuhtauksien erotukseen. Lisäksi kirjallisuusosassa on esitetty hydrolysointiprosessissa syntyviä haitta-aineita ja niiden erotusmenetelmiä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Utilization of biomass-based raw materials for the production of chemicals and materials is gaining an increasing interest. Due to the complex nature of biomass, a major challenge in its refining is the development of efficient fractionation and purification processes. Preparative chromatography and membrane filtration are selective, energy-efficient separation techniques which offer a great potential for biorefinery applications. Both of these techniques have been widely studied. On the other hand, only few process concepts that combine the two methods have been presented in the literature. The aim of this thesis was to find the possible synergetic effects provided by combining chromatographic and membrane separations, with a particular interest in biorefinery separation processes. Such knowledge could be used in the development of new, more efficient separation processes for isolating valuable compounds from complex feed solutions that are typical for the biorefinery environment. Separation techniques can be combined in various ways, from simple sequential coupling arrangements to fully-integrated hybrid processes. In this work, different types of combined separation processes as well as conventional chromatographic separation processes were studied for separating small molecules such as sugars and acids from biomass hydrolysates and spent pulping liquors. The combination of chromatographic and membrane separation was found capable of recovering high-purity products from complex solutions. For example, hydroxy acids of black liquor were successfully recovered using a novel multistep process based on ultrafiltration and size-exclusion chromatography. Unlike any other separation process earlier suggested for this challenging separation task, the new process concept does not require acidification pretreatment, and thus it could be more readily integrated into a pulp-mill biorefinery. In addition to the combined separation processes, steady-state recycling chromatography, which has earlier been studied for small-scale separations of high-value compounds only, was found a promising process alternative for biorefinery applications. In comparison to conventional batch chromatography, recycling chromatography provided higher product purity, increased the production rate and reduced the chemical consumption in the separation of monosaccharides from biomass hydrolysates. In addition, a significant further improvement in the process performance was obtained when a membrane filtration unit was integrated with recycling chromatography. In the light of the results of this work, separation processes based on combining membrane and chromatographic separations could be effectively applied for different biorefinery applications. The main challenge remains in the development of inexpensive separation materials which are resistant towards harsh process conditions and fouling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En ny familj av reversibla (switchable) joniska vätskor (SIL) innehållande 1,8-diazobicyklo-[5.4.0]-undek-7-en (DBU), en molekyl innehållande en eller flera hydroxyl- grupper (t.ex. glycerol) och en sur gas (CO2, SO2) syntetiserades via en enkel procedur samt karakteriserades. [DBU][karbonat] eller [sulfonat] bildades ur en respektive icke-jonisk blandning av en molekylär, organisk polyol (eller ennan molekyl innehållande en OH-grupp) och en amidinbas under bubblandet av en sur gas. Därtill kunde den joniska vätskan omvandlas tillbaka till sina beståndsdelar med hjälp av att upphetta och/eller bubbla en inert gas såsom kväve genom vätskan. SIL- strukturerna kartlades med bl.a. NMR- och FTIR- spektroskopi. Omvandlingen från lågpolära (molekylära) vätskor till högpolära joniska vätskor (SIL) bekräftades även genom att observera förändringar i deras fysikaliska egenskaper, såsom viskositet och färg. Nedbrytningstemperaturerna hos SILs bestämdes med hjälp av termogravimetrisk analys (TGA) som antydde att nedbrytningstemperaturen hos de syntetiserade föreningarna log mellan 50 och 200oC. De nya joniska vätskorna uppvisade högre nedbrytningstemperaturer jämfört med i litteraturen tidigare förekommande exempel och kunde därför tillämpas på flera ändamål. Därtill, reversibla (switchable) joniska vätskor uppbyggda av bl.a. alkoholer, antingen hexanol eller butanol, och CO2 samt en amidin (DBU) användes vid upplösning och fraktionering av ved. Joniska vätskor syntetiserade ur glycerol och sura gaser tillsammans med amidiner användes även för fraktionering av andra lignocellulosor såsom färsk björk (Betula pendula). Björkflis utsattes för behandling, för en period på en till fem dagar vid 100oC och under atmosfäriskt tryck. Alla syntetiserade joniska vätskor visade sig vara relativt neutrala i avseende på upplösning och avlägsnandet av lignin. Slutligen, optimala fraktioneringprocessbetingelser för ved med reversibla joniska vätskor kartlades. Fraktionering av vedbiomassa med dessa joniska vätskor uppvisade sig att vara en selektiv och effektiv metod för extraktion av olika komponenter från lignocellulosa. Den olösta fraktionen hos en vedflis, närmast cellulosa, fibrillerades. -------------------------------------------------------------------------------------------------------------------- Tässä työssä kehitettiin perhe uuden tyyppisiä, reversiibeleitä (switchable) ioninesteitä ( SIL ) joka koostuvat orgaanisesta super-emäksestä kuten 1,8- diatsabisyklo [ 5.4.0] undek- 7-eeni (DBU ) ja yhden tai useampia hydroksyyliryhmiä sisältältävästä molekyylistä (esim. glyseroli) ja happamasta kaasusta (CO2 , SO2) yksinkertaisen menetelmän avulla. [DBU] [ karbonaatti] tai [sulfonaatti] syntetisoitiin kunkin lähtöaineen seoksista kuplittamalla seosta happamalla kaasulla jolloin eksoterminen reaktio tapahtui ja ioninen neste syntyi. Ioniset nesteet voitiin palauttaa takaisin lähtöaineseokseksi kuumentamalla ja/tai kuplittamalla neutraalia kaasua (esim. typpi) seoksen läpi. SIL rakenteet määritettiin ja niiden ominaisuudet kartoitettiin eri menetelmillä, mukaan lukien NMR- ja FTIR -spektroskopia. Ionisen, korkeapoläärisen nesteen syntyminen todennettiin myös viskositeettimittauksilla ja värinmuutoksilla käyttäen hyväksi polariteetti-indikaattoria (Nile red). Myös hajoamislämpötilat määritettiin termogravimetrisellä analyysillä (TGA) ja todettiin että syntetisoitujen yhdisteiden hajoamislämpötila oli välillä 50 ja 200oC . Näiden uusien reversiibeleiden ioninesteiden hajoamisämpötilat olivat korkeammat verrattuna kirjallisuudessa aikaisemmin mainittuihin esimerkkeihin joten niitä voidaan soveltaa useisiin tarkoituksiin. Myös ioninesteitä jotka sisälsivät primäärejä alkoholeja rakennusaineina syntetisoitiin ja hyödynnettiin puun fraktioinnissa. Männyn ja kuusen lisäksi tuoreita koivulastuja onnistuttiin fraktioimaan miedoissa olosuhteissa. Kaikkien syntetisoitujen ioninesteiden todettiin olevan suhteellisen neutraaleja ligniinin liuotuksen suhteen. Vielä, optimaaliset fraktiointiolosuhteet määritettiin ryhmälle reversiibeleitä ioninesteitä ja näiden uudenlaisten ioninesteiden todettiin olevan tehokkaita puun ja muiden lignoselluloosien eri fraktioiden liuotuksessa. Liukenematon osa puulastua joka oli lähinnä selluloosaa fibrilloitui.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of chemicals from sawdust by wet oxidation has been investigated. Two different concentrations of sawdust; 54054 mg/l and 32683 mg/l were used in the study. The wet oxidation operating conditions were; 175 deg.C – 225 deg.C, 1MPa Oxygen, and 40 minutes to 120 minutes reaction time. Carboxylic acids were among the chemicals produced in the process. The total yield of carboxylic acids was found to increase with temperature. Also, higher yields of carboxylic acids were observed at a lower sawdust concentration. This was probably due to the high oxygen-biomass ratio at lower sawdust concentration. Higher oxygen availability at low sawdust concentration resulted in increased conversion of the sawdust; hence the higher yields of carboxylic acids. At lower sawdust concentration, a total carboxylic acid yield of 25.59 wt% was attained at 200 deg.C and 40 minutes reaction time. At higher sawdust concentration, a total carboxylic acid yield of 15.57 wt% was attained at 200 deg.C and 40-minutes reaction time. The carboxylic acids identified include formic acid, acetic acid, succinic acid and oxalic acid. The optimum temperature for the production of formic acid was found to be 200 deg.C, while the optimum temperature for the production of acetic acid was found to be 225 deg.C. A temperature of 225 deg.C and relatively short reaction time of 10 minutes was found to be the optimal condition for the production of succinic acid. Formic acid was produced in the highest yield, with an optimal yield of 13.69wt %, when the reaction temperature and time are 200 deg.C and 40 minutes respectively. The yield of formic acid was found to decrease significantly when further increasing the temperature to 225 deg.C. This was presumably due to thermal decomposition of formic acid at relatively higher temperature. However, the yield of acetic acid was found to steadily increase with temperature. This is because acetic is more thermally stable than formic acid. The yield of acetic acid did not decrease after the temperature was increased to 225 deg.C. Optimal yield of acetic acid (7.98wt %) was achieved at; 225 deg.C, and 40 minutes reaction time. Succinic acid was produced only at temperatures of 200 deg.C and 225 deg.C. Optimal yield of succinic acid (5.66wt %) was attained under the following conditions; 32683 mg/l, 225 deg.C, 1MPa O2, and 10-minutes reaction time. Oxalic acid was produced in the lowest yield and, less frequently. The optimal yield of oxalic acid (4.02 wt%) was attained at 175 deg.C and 80-minutes of reaction time The Total Organic Carbon (TOC) is found to be higher when increasing the operating temperature, thus suggesting that more organic compounds are formed at higher temperatures. The identified carboxylic acids could only account for less than 30% of the measured COD content of the various wet oxidation samples. This implies that some other unidentified compounds (reaction products) must have been present. In general, wet oxidation seems to be an effective method for converting lignocellulosic biomass into useful chemicals. Relatively higher temperatures have been found to favor the production of carboxylic acids from sawdust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis focuses on flavonoids, a subgroup of phenolic compounds produced by plants, and how they affect the herbivorous larvae of lepidopterans and sawflies. The first part of the literature review examines different techniques to analyze the chemical structures of flavonoids and their concentrations in biological samples. These techniques include, for example, ultraviolet-visible spectroscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. The second part of the literature review studies how phenolic compounds function in the metabolism of larvae. The harmful oxidation reactions of phenolic compounds in insect guts are also emphasized. In addition to the negative effects, many insect species have evolved the use of phenolic compounds for their own benefit. In the experimental part of the thesis, high concentrations of complex flavonoid oligoglycosides were found in the hemolymph (the circulatory fluid of insects) of birch and pine sawflies. The larvae produced these compounds from simple flavonoid precursors present in the birch leaves and pine needles. Flavonoid glycosides were also found in the cocoon walls of sawflies, which suggested that flavonoids were used in the construction of cocoons. The second part of the experimental work studied the modifications of phenolic compounds in conditions that mimicked the alkaline guts of lepidopteran larvae. It was found that the 24 plant species studied and their individual phenolic compounds had variable capacities to function as oxidative defenses in alkaline conditions. The excrements of lepidopteran and sawfly species were studied to see how different types of phenolics were processed by the larvae. These results suggested that phenolic compounds were oxidized, hydrolyzed, or modified in other ways during their passage through the digestive tract of the larvae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitosis is under the stringent quality control of the spindle assembly checkpoint (SAC). However, in cancer cells this control can fail, leading to excessive cellular proliferation and ultimately to the formation of a tumor. Novel cancer cell selective therapies are needed to stop the uncontrolled cell proliferation and tumor growth. The aim of the research presented in this thesis was to identify microRNAs (miRNAs) that could play a role in cancer cell proliferation as well as low molecular weight (LMW) compounds that could interfere with cell division. The findings could be used to develop better cancer diagnostics and therapies in the future. First, a high-throughput screen (HTS) was performed to identify LMW compounds that possess a similar chemical interaction field as rigosertib, an anti-cancer compound undergoing clinical trials. A compound termed Centmitor-1 was discovered that phenocopied the cellular impact of rigosertib by affecting the microtubule dynamics. Next, another HTS aimed at identifying compounds that would target the Hec1 protein, which mediates the interaction between spindle microtubules and chromosomes. Perturbation of this connection should prevent cell division and induce cell death. A compound termed VTT-006 was discovered that abrogated mitosis in several cell line models and exhibited binding to Hec1 in vitro. Lastly, using a cell-based HTS two miRNAs were identified that affected cancer cell proliferation via Aurora B kinase, which is an important mitotic regulator. MiR-378a-5p was found to indirectly suppress the production of the kinase whereas let-7b showed direct binding to the 3’UTR of Aurora B mRNA and repressed its translation. The miRNA-mediated perturbation of Aurora B induced defects in mitosis leading to abnormal chromosome segregation and induction of aneuploidy. The results of this thesis provide new information on miRNA signaling in cancer, which could be utilized for diagnostic purposes. Moreover, the thesis introduces two small compounds that may benefit future drug research.