24 resultados para Visualization technique
Resumo:
During the past decades testing has matured from ad-hoc activity into being an integral part of the development process. The benefits of testing are obvious for modern communication systems, which operate in heterogeneous environments amongst devices from various manufacturers. The increased demand for testing also creates demand for tools and technologies that support and automate testing activities. This thesis discusses applicability of visualization techniques in the result analysis part of the testing process. Particularly, the primary focus of this work is visualization of test execution logs produced by a TTCN-3 test system. TTCN-3 is an internationally standardized test specification and implementation language. The TTCN-3 standard suite includes specification of a test logging interface and a graphical presentation format, but no immediate relationship between them. This thesis presents a technique for mapping the log events to the graphical presentation format along with a concrete implementation, which is integrated with the Eclipse Platform and the OpenTTCN Tester toolchain. Results of this work indicate that for majority of the log events, a visual representation may be derived from the TTCN-3 standard suite. The remaining events were analysed and three categories relevant in either log analysis or implementation of the visualization tool were identified: events indicating insertion of something into the incoming queue of a port, events indicating a mismatch and events describing the control flow during the execution. Applicability of the results is limited into the domain of TTCN-3, but the developed mapping and the implementation may be utilized with any TTCN-3 tool that is able to produce the execution log in the standardized XML format.
Resumo:
Visual data mining (VDM) tools employ information visualization techniques in order to represent large amounts of high-dimensional data graphically and to involve the user in exploring data at different levels of detail. The users are looking for outliers, patterns and models – in the form of clusters, classes, trends, and relationships – in different categories of data, i.e., financial, business information, etc. The focus of this thesis is the evaluation of multidimensional visualization techniques, especially from the business user’s perspective. We address three research problems. The first problem is the evaluation of projection-based visualizations with respect to their effectiveness in preserving the original distances between data points and the clustering structure of the data. In this respect, we propose the use of existing clustering validity measures. We illustrate their usefulness in evaluating five visualization techniques: Principal Components Analysis (PCA), Sammon’s Mapping, Self-Organizing Map (SOM), Radial Coordinate Visualization and Star Coordinates. The second problem is concerned with evaluating different visualization techniques as to their effectiveness in visual data mining of business data. For this purpose, we propose an inquiry evaluation technique and conduct the evaluation of nine visualization techniques. The visualizations under evaluation are Multiple Line Graphs, Permutation Matrix, Survey Plot, Scatter Plot Matrix, Parallel Coordinates, Treemap, PCA, Sammon’s Mapping and the SOM. The third problem is the evaluation of quality of use of VDM tools. We provide a conceptual framework for evaluating the quality of use of VDM tools and apply it to the evaluation of the SOM. In the evaluation, we use an inquiry technique for which we developed a questionnaire based on the proposed framework. The contributions of the thesis consist of three new evaluation techniques and the results obtained by applying these evaluation techniques. The thesis provides a systematic approach to evaluation of various visualization techniques. In this respect, first, we performed and described the evaluations in a systematic way, highlighting the evaluation activities, and their inputs and outputs. Secondly, we integrated the evaluation studies in the broad framework of usability evaluation. The results of the evaluations are intended to help developers and researchers of visualization systems to select appropriate visualization techniques in specific situations. The results of the evaluations also contribute to the understanding of the strengths and limitations of the visualization techniques evaluated and further to the improvement of these techniques.
Resumo:
Selostus: Mahdollisuus lyhytaikaisen virtsankeruun käyttöön lypsylehmien virtsan pseudouridiinin erityksen määrittämisessä
Resumo:
Yhteenveto: Käytännöllinen oikeanpuoleinen viiltogastropeksia mahalaukun laajentumisen ja kiertymisen hoitona tai ennaltaehkäisynä
Resumo:
Image filtering is a highly demanded approach of image enhancement in digital imaging systems design. It is widely used in television and camera design technologies to improve the quality of an output image to avoid various problems such as image blurring problem thatgains importance in design of displays of large sizes and design of digital cameras. This thesis proposes a new image filtering method basedon visual characteristics of human eye such as MTF. In contrast to the traditional filtering methods based on human visual characteristics this thesis takes into account the anisotropy of the human eye vision. The proposed method is based on laboratory measurements of the human eye MTF and takes into account degradation of the image by the latter. This method improves an image in the way it will be degraded by human eye MTF to give perception of the original image quality. This thesis gives a basic understanding of an image filtering approach and the concept of MTF and describes an algorithm to perform an image enhancement based on MTF of human eye. Performed experiments have shown quite good results according to human evaluation. Suggestions to improve the algorithm are also given for the future improvements.
Resumo:
Contrast enhancement is an image processing technique where the objective is to preprocess the image so that relevant information can be either seen or further processed more reliably. These techniques are typically applied when the image itself or the device used for image reproduction provides poor visibility and distinguishability of different regions of interest inthe image. In most studies, the emphasis is on the visualization of image data,but this human observer biased goal often results to images which are not optimal for automated processing. The main contribution of this study is to express the contrast enhancement as a mapping from N-channel image data to 1-channel gray-level image, and to devise a projection method which results to an image with minimal error to the correct contrast image. The projection, the minimum-error contrast image, possess the optimal contrast between the regions of interest in the image. The method is based on estimation of the probability density distributions of the region values, and it employs Bayesian inference to establish the minimum error projection.
Resumo:
The objective of this work was to introduce the emerging non-contacting spray coating process and compare it to the existing coating techniques. Particular emphasis was given to the details of the spraying process of paper coating colour and the base paper requirements set by the new coating method. Spraying technology itself is nothing new, but the atomisation process of paper coating colour is quite unknown to the paper industry. The differences between the rheology of painting and coating colours make it very difficult to utilise the existing information from spray painting research. Based on the trials, some basic conclusion can be made:The results of this study suggest that the Brookfield viscosity of spray coating colour should be as low as possible, presently a 50 mPas level is regarded as an optimum. For the paper quality and coater runnability, the solids level should be as high as possible. However, the graininess of coated paper surface and the nozzle wear limits the maximum solids level to 60 % at the moment. Most likelydue to the low solids and low viscosity of the coating colour the low shear Brookfield viscosity correlates very well with the paper and spray fan qualities. High shear viscosity is also important, but yet less significant than the low shear viscosity. Droplet size should be minimized and besides keeping the brrokfield viscosity low that can be helped by using a surfactant or dispersing agent in the coating colour formula. Increasing the spraying pressure in the nozzle can also reduce the droplet size. The small droplet size also improves the coating coverage, since there is hardly any levelling taking place after the impact with the base paper. Because of the lack of shear forces after the application, the pigment particles do not orientate along the paper surface. Therefore the study indicates that based on the present know-how, no quality improvements can be obtained by the use of platy type of pigments. The other disadvantage of them is the rapid deterioration of the nozzle lifetime. Further research in both coating colour rheology and nozzle design may change this in the future, but so far only round shape pigments, like typically calcium carbonate is, can be used with spray coating. The low water retention characteristics of spray coating, enhanced by the low solids and low viscosity, challenge the base paper absorption properties.Filler level has to be low not to increase the number of small pores, which have a great influence on the absorption properties of the base paper. Hydrophobic sizing reduces this absorption and prevents binder migration efficiently. High surface roughness and especially poor formation of the base paper deteriorate thespray coated paper properties. However, pre-calendering of the base paper does not contribute anything to the finished paper quality, at least at the coating colour solids level below 60 %. When targeting a standard offset LWC grade, spraycoating produces similar quality to film coating, but yet blade coating being on a slightly better level. However, because of the savings in both investment and production costs, spray coating may have an excellent future ahead. The porousnature of the spray coated surface offers an optimum substrate for the coldset printing industry to utilise the potential of high quality papers in their business.
Resumo:
Performance standards for Positron emission tomography (PET) were developed to be able to compare systems from different generations and manufacturers. This resulted in the NEMA methodology in North America and the IEC in Europe. In practices, the NEMA NU 2- 2001 is the method of choice today. These standardized methods allow assessment of the physical performance of new commercial dedicated PET/CT tomographs. The point spread in image formation is one of the factors that blur the image. The phenomenon is often called the partial volume effect. Several methods for correcting for partial volume are under research but no real agreement exists on how to solve it. The influence of the effect varies in different clinical settings and it is likely that new methods are needed to solve this problem. Most of the clinical PET work is done in the field of oncology. The whole body PET combined with a CT is the standard investigation today in oncology. Despite the progress in PET imaging technique visualization, especially quantification of small lesions is a challenge. In addition to partial volume, the movement of the object is a significant source of error. The main causes of movement are respiratory and cardiac motions. Most of the new commercial scanners are in addition to cardiac gating, also capable of respiratory gating and this technique has been used in patients with cancer of the thoracic region and patients being studied for the planning of radiation therapy. For routine cardiac applications such as assessment of viability and perfusion only cardiac gating has been used. However, the new targets such as plaque or molecular imaging of new therapies require better control of the cardiac motion also caused by respiratory motion. To overcome these problems in cardiac work, a dual gating approach has been proposed. In this study we investigated the physical performance of a new whole body PET/CT scanner with NEMA standard, compared methods for partial volume correction in PET studies of the brain and developed and tested a new robust method for dual cardiac-respiratory gated PET with phantom, animal and human data. Results from performance measurements showed the feasibility of the new scanner design in 2D and 3D whole body studies. Partial volume was corrected, but there is no best method among those tested as the correction also depends on the radiotracer and its distribution. New methods need to be developed for proper correction. The dual gating algorithm generated is shown to handle dual-gated data, preserving quantification and clearly eliminating the majority of contraction and respiration movement
Resumo:
Virtual screening is a central technique in drug discovery today. Millions of molecules can be tested in silico with the aim to only select the most promising and test them experimentally. The topic of this thesis is ligand-based virtual screening tools which take existing active molecules as starting point for finding new drug candidates. One goal of this thesis was to build a model that gives the probability that two molecules are biologically similar as function of one or more chemical similarity scores. Another important goal was to evaluate how well different ligand-based virtual screening tools are able to distinguish active molecules from inactives. One more criterion set for the virtual screening tools was their applicability in scaffold-hopping, i.e. finding new active chemotypes. In the first part of the work, a link was defined between the abstract chemical similarity score given by a screening tool and the probability that the two molecules are biologically similar. These results help to decide objectively which virtual screening hits to test experimentally. The work also resulted in a new type of data fusion method when using two or more tools. In the second part, five ligand-based virtual screening tools were evaluated and their performance was found to be generally poor. Three reasons for this were proposed: false negatives in the benchmark sets, active molecules that do not share the binding mode, and activity cliffs. In the third part of the study, a novel visualization and quantification method is presented for evaluation of the scaffold-hopping ability of virtual screening tools.
Resumo:
With the increase of use of digital media the need for the methods of multimedia protection becomes extremely important. The number of the solutions to the problem from encryption to watermarking is large and is growing every year. In this work digital image watermarking is considered, specifically a novel method of digital watermarking of color and spectral images. An overview of existing methods watermarking of color and grayscale images is given in the paper. Methods using independent component analysis (ICA) for detection and the ones using discrete wavelet transform (DWT) and discrete cosine transform (DCT) are considered in more detail. A novel method of watermarking proposed in this paper allows embedding of a color or spectral watermark image into color or spectral image consequently and successful extraction of the watermark out of the resultant watermarked image. A number of experiments have been performed on the quality of extraction depending on the parameters of the embedding procedure. Another set of experiments included the test of the robustness of the algorithm proposed. Three techniques have been chosen for that purpose: median filter, low-pass filter (LPF) and discrete cosine transform (DCT), which are a part of a widely known StirMark - Image Watermarking Robustness Test. The study shows that the proposed watermarking technique is fragile, i.e. watermark is altered by simple image processing operations. Moreover, we have found that the contents of the image to be watermarked do not affect the quality of the extraction. Mixing coefficients, that determine the amount of the key and watermark image in the result, should not exceed 1% of the original. The algorithm proposed has proven to be successful in the task of watermark embedding and extraction.
Resumo:
The purpose of this study was to simulate and to optimize integrated gasification for combine cycle (IGCC) for power generation and hydrogen (H2) production by using low grade Thar lignite coal and cotton stalk. Lignite coal is abundant of moisture and ash content, the idea of addition of cotton stalk is to increase the mass of combustible material per mass of feed use for the process, to reduce the consumption of coal and to increase the cotton stalk efficiently for IGCC process. Aspen plus software is used to simulate the process with different mass ratios of coal to cotton stalk and for optimization: process efficiencies, net power generation and H2 production etc. are considered while environmental hazard emissions are optimized to acceptance level. With the addition of cotton stalk in feed, process efficiencies started to decline along with the net power production. But for H2 production, it gave positive result at start but after 40% cotton stalk addition, H2 production also started to decline. It also affects negatively on environmental hazard emissions and mass of emissions/ net power production increases linearly with the addition of cotton stalk in feed mixture. In summation with the addition of cotton stalk, overall affects seemed to negative. But the effect is more negative after 40% cotton stalk addition so it is concluded that to get maximum process efficiencies and high production less amount of cotton stalk addition in feed is preferable and the maximum level of addition is estimated to 40%. Gasification temperature should keep lower around 1140 °C and prefer technique for studied feed in IGCC is fluidized bed (ash in dry form) rather than ash slagging gasifier