16 resultados para Visual image
Resumo:
Viimeisten vuosien aikana laajakaistaoperaattoreiden laajakaistaverkot ovat nopeiden ja kiinteähintaisten laajakaistaliittymien johdosta kasvaneet suuriksi kokonaisuuksiksi. Kokonaisuuksia hallitaan erilaisilla verkonhallintatyökaluilla. Verkonhallintatyökalut sisältävät suuren määrän eri tasoista tietoa laitteista ja laitteiden välisistä suhteista. Kokonaisuuksien hahmottaminen ilman tiedoista rakennettua kuvaa on vaikeaa ja hidasta. Laajakaistaverkon topologian visualisoinnissa muodostetaan kuva laitteista ja niiden välisistä suhteista. Visualisoitua kuvaa voidaan käyttää osana verkonhallintatyökalua, jolloin käyttäjälle muodostuu nopeasti näkymä verkon laitteista ja rakenteesta eli topologiasta. Visualisoinnissa kuvan piirto-ongelma täytyy muuttaa graafin piirto-ongelmaksi. Graafin piirto-ongelmassa verkon rakennetta käsitellään graafina, joka mahdollistaa kuvan muodostamisen automaattisia piirtomenetelmiä hyväksikäyttäen. Halutunlainen ulkoasu kuvalle muodostetaan automaattisilla piirtomenetelmillä, joilla laitteiden ja laitteiden välisten suhteiden esitystapoja voidaan muuttaa. Esitystavoilla voidaan muuttaa esimerkiksi laitteiden muotoa, väriä ja kokoa. Esitystapojen lisäksi piirtomenetelmien tärkein tehtävä on laskea laitteiden sijaintien koordinaattien arvot, jotka loppujen lopuksi määräävät koko kuvan rakenteen. Koordinaattien arvot lasketaan piirtoalgoritmeilla, joista voimiin perustuvat algoritmit sopivat parhaiten laajakaistaverkkojen laitteiden sijaintien laskemiseen. Tämän diplomityön käytännön työssä toteutettiin laajakaistaverkon topologian visualisointityökalu.
Resumo:
I den första delen av den här avhandlingen presenteras en bildens genealogi. Den skildrar hur begreppen för bilden, seendet och jaget utvecklades i relation till varandra i en specifik vetenskaplig och filosofisk kontext. Berättelsen sträcker sig från den tidiga renässansen och det perspektivistiska måleriet, till fotografiets födelse och positivismen. Den här utvecklingen medförde en form av reduktionism i vilken jagets roll – betydelsen av den mänskliga psykologin, vårt omdöme, vår uppmärksamhet och vår vilja – blev förbisedd. Inom den här tanketraditionen uppstod en förskjutning, från en förståelse av bilden som en representation av det tredimensionella rummet på en tvådimensionell yta, till en uppfattning om bilden som en genomskinlig ruta, ett fönster ut mot världen. Idén om avbildningen som en neutral ”blick från ingenstans” kom att förstärka en skeptisk hållning till kommunikation, dialog och vittnesmål och därmed även undergräva vår tillit till varandra och följaktligen vår tillit till oss själva. I den andra delen erbjuder författaren ett alternativ till den tanketradition som behandlas i den första delen. Det som blev förbisett i uppfattningen om en blick från ingenstans var att bilden är ett hjälpmedel då vi bearbetar vårt synfält. Bilden hjälper oss att dela vår syn på saker. Genom den här uppgiften av att dela blir bilden riktningsgivande i våra försök att orientera oss i världen. Jag kan stå bredvid en annan människa och se vad hon ser, men jag vet inte nödvändigtvis hur hon uppfattar det vi ser. Bilden lägger till ett led i det här förhållandet eftersom den inte enbart visar vad den andra ser. När bilden fungerar som den skall visar den också hur den andra ser och på det här sättet blir bilden verksam. Den föreliggande avhandlingen kombinerar epistemologi med vetenskapshistoria och visuella kulturstudier, men dess huvudintresse är filosofiskt. Den befattar sig med filosofiska missförstånd angående avbildning som en mimetisk konstform, kunskap som domesticering och varseblivning som mottagning av data. ------------------------------------------------------ Tämän väitöskirjan ensimmäinen osa selvittää kuvakäsitteen genealogiaa. Se havainnollistaa miten kuvan, näkemisen ja minän käsitteet kehittyivät suhteessa toisiinsa. Kertomus ulottuu varhaisesta renessanssista ja perspektivistisestä maalaustaiteesta, positivismin aikakauteen ja valokuvan syntyyn. Tämä kehitys toi mukanaan reduktionismin jossa minän rooli – ihmisen psykologian merkitys, meidän arviointikyky, meidän huomiokyky sekä meidän tahtomme – vaipui unohduksiin. Ajatusmaailmassa tapahtui siirtymä, kuvan merkitys vaihtui käsityksestä jossa se on kolmiulotteisen tilan representaatio kaksiulotteisella pinnalla, käsitykseen jossa kuva on läpinäkyvä ruutu, ikkuna kohti maailmaa. Ajatus kuvasta neutraalin näkökulman kantajana vahvisti skeptistä suhtautumista kommunikaatiota, dialogisuutta ja subjektiivisuutta kohtaan. Tämä skeptisyys ilmentyi myös vahvana epäluottamuksena ihmiskeskeisyyttä ja toiseutta kohtaan. Toisessa osassa tekijä tarjoaa vaihtoehdon tälle skeptiselle ajatusmaailmalle jota tarkastellaan ensimmäisessä osassa. Kuva on myös väline joka auttaa meitä jäsentämään meidän näkökenttäämme. Se auttaa meitä jakamaan meidän käsityksiä toistemme kanssa. Tämä näkemisen jakamisen käytäntö on kuvan keskeinen tehtävä. Voin seistä toisen ihmisen vieressä ja nähdä samat asiat kuin hän, mutta en välttämättä ymmärrä miten hän näkee nämä asiat. Kuva lisää jotain olennaista tähän suhteeseen. Kun kuva toimii niin kun sen kuuluu toimia, se näyttää myös miten toinen näkee, tällä tavalla kuvasta tulee välittäjä. Tämä väitöskirja yhdistää epistemologiaa, tieteen historiaa ja visuaalisen kulttuurin tutkimusta, mutta sen pääasiallinen tavoite on filosofinen. Se käsittelee filosofisia väärinkäsityksiä koskien kuvan eideettisyyttä.
Resumo:
Localization, which is the ability of a mobile robot to estimate its position within its environment, is a key capability for autonomous operation of any mobile robot. This thesis presents a system for indoor coarse and global localization of a mobile robot based on visual information. The system is based on image matching and uses SIFT features as natural landmarks. Features extracted from training images arestored in a database for use in localization later. During localization an image of the scene is captured using the on-board camera of the robot, features are extracted from the image and the best match is searched from the database. Feature matching is done using the k-d tree algorithm. Experimental results showed that localization accuracy increases with the number of training features used in the training database, while, on the other hand, increasing number of features tended to have a negative impact on the computational time. For some parts of the environment the error rate was relatively high due to a strong correlation of features taken from those places across the environment.
Resumo:
Image filtering is a highly demanded approach of image enhancement in digital imaging systems design. It is widely used in television and camera design technologies to improve the quality of an output image to avoid various problems such as image blurring problem thatgains importance in design of displays of large sizes and design of digital cameras. This thesis proposes a new image filtering method basedon visual characteristics of human eye such as MTF. In contrast to the traditional filtering methods based on human visual characteristics this thesis takes into account the anisotropy of the human eye vision. The proposed method is based on laboratory measurements of the human eye MTF and takes into account degradation of the image by the latter. This method improves an image in the way it will be degraded by human eye MTF to give perception of the original image quality. This thesis gives a basic understanding of an image filtering approach and the concept of MTF and describes an algorithm to perform an image enhancement based on MTF of human eye. Performed experiments have shown quite good results according to human evaluation. Suggestions to improve the algorithm are also given for the future improvements.
Resumo:
Tässä työssä raportoidaan hybridihitsauksesta otettujen suurnopeuskuvasarjojen automaattisen analyysijärjestelmän kehittäminen.Järjestelmän tarkoitus oli tuottaa tietoa, joka avustaisi analysoijaa arvioimaan kuvatun hitsausprosessin laatua. Tutkimus keskittyi valokaaren taajuuden säännöllisyyden ja lisäainepisaroiden lentosuuntien mittaamiseen. Valokaaria havaittiin kuvasarjoista sumean c-means-klusterointimenetelmän avullaja perättäisten valokaarien välistä aikaväliä käytettiin valokaaren taajuuden säännöllisyyden mittarina. Pisaroita paikannettiin menetelmällä, jossa yhdistyi pääkomponenttianalyysi ja tukivektoriluokitin. Kalman-suodinta käytettiin tuottamaan arvioita pisaroiden lentosuunnista ja nopeuksista. Lentosuunnanmääritysmenetelmä luokitteli pisarat niiden arvioitujen lentosuuntien perusteella. Järjestelmän kehittämiseen käytettävissä olleet kuvasarjat poikkesivat merkittävästi toisistaan kuvanlaadun ja pisaroiden ulkomuodon osalta, johtuen eroista kuvaus- ja hitsausprosesseissa. Analyysijärjestelmä kehitettiin toimimaan pienellä osajoukolla kuvasarjoja, joissa oli tietynlainen kuvaus- ja hitsausprosessi ja joiden kuvanlaatu ja pisaroiden ulkomuoto olivat samankaltaisia, mutta järjestelmää testattiin myös osajoukon ulkopuolisilla kuvasarjoilla. Testitulokset osoittivat, että lentosuunnanmääritystarkkuus oli kohtuullisen suuri osajoukonsisällä ja pieni muissa kuvasarjoissa. Valokaaren taajuuden säännöllisyyden määritys oli tarkka useammassa kuvasarjassa.
Resumo:
Multispectral images contain information from several spectral wavelengths and currently multispectral images are widely used in remote sensing and they are becoming more common in the field of computer vision and in industrial applications. Typically, one multispectral image in remote sensing may occupy hundreds of megabytes of disk space and several this kind of images may be received from a single measurement. This study considers the compression of multispectral images. The lossy compression is based on the wavelet transform and we compare the suitability of different waveletfilters for the compression. A method for selecting a wavelet filter for the compression and reconstruction of multispectral images is developed. The performance of the multidimensional wavelet transform based compression is compared to other compression methods like PCA, ICA, SPIHT, and DCT/JPEG. The quality of the compression and reconstruction is measured by quantitative measures like signal-to-noise ratio. In addition, we have developed a qualitative measure, which combines the information from the spatial and spectral dimensions of a multispectral image and which also accounts for the visual quality of the bands from the multispectral images.
Resumo:
The number of digital images has been increasing exponentially in the last few years. People have problems managing their image collections and finding a specific image. An automatic image categorization system could help them to manage images and find specific images. In this thesis, an unsupervised visual object categorization system was implemented to categorize a set of unknown images. The system is unsupervised, and hence, it does not need known images to train the system which needs to be manually obtained. Therefore, the number of possible categories and images can be huge. The system implemented in the thesis extracts local features from the images. These local features are used to build a codebook. The local features and the codebook are then used to generate a feature vector for an image. Images are categorized based on the feature vectors. The system is able to categorize any given set of images based on the visual appearance of the images. Images that have similar image regions are grouped together in the same category. Thus, for example, images which contain cars are assigned to the same cluster. The unsupervised visual object categorization system can be used in many situations, e.g., in an Internet search engine. The system can categorize images for a user, and the user can then easily find a specific type of image.
Resumo:
This thesis presents two graphical user interfaces for the project DigiQ - Fusion of Digital and Visual Print Quality, a project for computationally modeling the subjective human experience of print quality by measuring the image with certain metrics. After presenting the user interfaces, methods for reducing the computation time of several of the metrics and the image registration process required to compute the metrics, and details of their performance are given. The weighted sample method for the image registration process was able to signifigantly decrease the calculation times while resulting in some error. The random sampling method for the metrics greatly reduced calculation time while maintaining excellent accuracy, but worked with only two of the metrics.
Resumo:
The problem of understanding how humans perceive the quality of a reproduced image is of interest to researchers of many fields related to vision science and engineering: optics and material physics, image processing (compression and transfer), printing and media technology, and psychology. A measure for visual quality cannot be defined without ambiguity because it is ultimately the subjective opinion of an “end-user” observing the product. The purpose of this thesis is to devise computational methods to estimate the overall visual quality of prints, i.e. a numerical value that combines all the relevant attributes of the perceived image quality. The problem is limited to consider the perceived quality of printed photographs from the viewpoint of a consumer, and moreover, the study focuses only on digital printing methods, such as inkjet and electrophotography. The main contributions of this thesis are two novel methods to estimate the overall visual quality of prints. In the first method, the quality is computed as a visible difference between the reproduced image and the original digital (reference) image, which is assumed to have an ideal quality. The second method utilises instrumental print quality measures, such as colour densities, measured from printed technical test fields, and connects the instrumental measures to the overall quality via subjective attributes, i.e. attributes that directly contribute to the perceived quality, using a Bayesian network. Both approaches were evaluated and verified with real data, and shown to predict well the subjective evaluation results.
Resumo:
Diabetes is a rapidly increasing worldwide problem which is characterised by defective metabolism of glucose that causes long-term dysfunction and failure of various organs. The most common complication of diabetes is diabetic retinopathy (DR), which is one of the primary causes of blindness and visual impairment in adults. The rapid increase of diabetes pushes the limits of the current DR screening capabilities for which the digital imaging of the eye fundus (retinal imaging), and automatic or semi-automatic image analysis algorithms provide a potential solution. In this work, the use of colour in the detection of diabetic retinopathy is statistically studied using a supervised algorithm based on one-class classification and Gaussian mixture model estimation. The presented algorithm distinguishes a certain diabetic lesion type from all other possible objects in eye fundus images by only estimating the probability density function of that certain lesion type. For the training and ground truth estimation, the algorithm combines manual annotations of several experts for which the best practices were experimentally selected. By assessing the algorithm’s performance while conducting experiments with the colour space selection, both illuminance and colour correction, and background class information, the use of colour in the detection of diabetic retinopathy was quantitatively evaluated. Another contribution of this work is the benchmarking framework for eye fundus image analysis algorithms needed for the development of the automatic DR detection algorithms. The benchmarking framework provides guidelines on how to construct a benchmarking database that comprises true patient images, ground truth, and an evaluation protocol. The evaluation is based on the standard receiver operating characteristics analysis and it follows the medical practice in the decision making providing protocols for image- and pixel-based evaluations. During the work, two public medical image databases with ground truth were published: DIARETDB0 and DIARETDB1. The framework, DR databases and the final algorithm, are made public in the web to set the baseline results for automatic detection of diabetic retinopathy. Although deviating from the general context of the thesis, a simple and effective optic disc localisation method is presented. The optic disc localisation is discussed, since normal eye fundus structures are fundamental in the characterisation of DR.
Resumo:
Local features are used in many computer vision tasks including visual object categorization, content-based image retrieval and object recognition to mention a few. Local features are points, blobs or regions in images that are extracted using a local feature detector. To make use of extracted local features the localized interest points are described using a local feature descriptor. A descriptor histogram vector is a compact representation of an image and can be used for searching and matching images in databases. In this thesis the performance of local feature detectors and descriptors is evaluated for object class detection task. Features are extracted from image samples belonging to several object classes. Matching features are then searched using random image pairs of a same class. The goal of this thesis is to find out what are the best detector and descriptor methods for such task in terms of detector repeatability and descriptor matching rate.
Resumo:
The large and growing number of digital images is making manual image search laborious. Only a fraction of the images contain metadata that can be used to search for a particular type of image. Thus, the main research question of this thesis is whether it is possible to learn visual object categories directly from images. Computers process images as long lists of pixels that do not have a clear connection to high-level semantics which could be used in the image search. There are various methods introduced in the literature to extract low-level image features and also approaches to connect these low-level features with high-level semantics. One of these approaches is called Bag-of-Features which is studied in the thesis. In the Bag-of-Features approach, the images are described using a visual codebook. The codebook is built from the descriptions of the image patches using clustering. The images are described by matching descriptions of image patches with the visual codebook and computing the number of matches for each code. In this thesis, unsupervised visual object categorisation using the Bag-of-Features approach is studied. The goal is to find groups of similar images, e.g., images that contain an object from the same category. The standard Bag-of-Features approach is improved by using spatial information and visual saliency. It was found that the performance of the visual object categorisation can be improved by using spatial information of local features to verify the matches. However, this process is computationally heavy, and thus, the number of images must be limited in the spatial matching, for example, by using the Bag-of-Features method as in this study. Different approaches for saliency detection are studied and a new method based on the Hessian-Affine local feature detector is proposed. The new method achieves comparable results with current state-of-the-art. The visual object categorisation performance was improved by using foreground segmentation based on saliency information, especially when the background could be considered as clutter.
Resumo:
In this work, image based estimation methods, also known as direct methods, are studied which avoid feature extraction and matching completely. Cost functions use raw pixels as measurements and the goal is to produce precise 3D pose and structure estimates. The cost functions presented minimize the sensor error, because measurements are not transformed or modified. In photometric camera pose estimation, 3D rotation and translation parameters are estimated by minimizing a sequence of image based cost functions, which are non-linear due to perspective projection and lens distortion. In image based structure refinement, on the other hand, 3D structure is refined using a number of additional views and an image based cost metric. Image based estimation methods are particularly useful in conditions where the Lambertian assumption holds, and the 3D points have constant color despite viewing angle. The goal is to improve image based estimation methods, and to produce computationally efficient methods which can be accomodated into real-time applications. The developed image-based 3D pose and structure estimation methods are finally demonstrated in practise in indoor 3D reconstruction use, and in a live augmented reality application.
Resumo:
One of the greatest conundrums to the contemporary science is the relation between consciousness and brain activity, and one of the specifi c questions is how neural activity can generate vivid subjective experiences. Studies focusing on visual consciousness have become essential in solving the empirical questions of consciousness. Th e main aim of this thesis is to clarify the relation between visual consciousness and the neural and electrophysiological processes of the brain. By applying electroencephalography and functional magnetic resonance image-guided transcranial magnetic stimulation (TMS), we investigated the links between conscious perception and attention, the temporal evolution of visual consciousness during stimulus processing, the causal roles of primary visual cortex (V1), visual area 2 (V2) and lateral occipital cortex (LO) in the generation of visual consciousness and also the methodological issues concerning the accuracy of targeting TMS to V1. Th e results showed that the fi rst eff ects of visual consciousness on electrophysiological responses (about 140 ms aft er the stimulus-onset) appeared earlier than the eff ects of selective attention, and also in the unattended condition, suggesting that visual consciousness and selective attention are two independent phenomena which have distinct underlying neural mechanisms. In addition, while it is well known that V1 is necessary for visual awareness, the results of the present thesis suggest that also the abutting visual area V2 is a prerequisite for conscious perception. In our studies, the activation in V2 was necessary for the conscious perception of change in contrast for a shorter period of time than in the case of more detailed conscious perception. We also found that TMS in LO suppressed the conscious perception of object shape when TMS was delivered in two distinct time windows, the latter corresponding with the timing of the ERPs related to the conscious perception of coherent object shape. Th e result supports the view that LO is crucial in conscious perception of object coherency and is likely to be directly involved in the generation of visual consciousness. Furthermore, we found that visual sensations, or phosphenes, elicited by the TMS of V1 were brighter than identically induced phosphenes arising from V2. Th ese fi ndings demonstrate that V1 contributes more to the generation of the sensation of brightness than does V2. Th e results also suggest that top-down activation from V2 to V1 is probably associated with phosphene generation. The results of the methodological study imply that when a commonly used landmark (2 cm above the inion) is used in targeting TMS to V1, the TMS-induced electric fi eld is likely to be highest in dorsal V2. When V1 was targeted according to the individual retinotopic data, the electric fi eld was highest in V1 only in half of the participants. Th is result suggests that if the objective is to study the role of V1 with TMS methodology, at least functional maps of V1 and V2 should be applied with computational model of the TMS-induced electric fi eld in V1 and V2. Finally, the results of this thesis imply that diff erent features of attention contribute diff erently to visual consciousness, and thus, the theoretical model which is built up of the relationship between visual consciousness and attention should acknowledge these diff erences. Future studies should also explore the possibility that visual consciousness consists of several processing stages, each of which have their distinct underlying neural mechanisms.
Resumo:
The importance of package design as a marketing tool is growing as the competition in retail environment increases. However, there is a lack of studies on how each element of package design affects consumer decisions in different countries. The objective of this thesis is to study the role of package design to Japanese consumers. The research was conducted through an experiment with a sample of 37 Japanese female participants. They were divided into two groups and were given different tasks: one group had to choose a chocolate for themselves, and the other for a group of friends. The participants were presented with 15 different Finnish chocolate boxes to choose from. The qualitative data was gathered through observation and semi-structured interviews. In addition, data from questionnaires was quantified and all the data was triangulated. The empirical results suggest that visual elements strongly affect the decision making of Japanese consumers. Image was the most important element which acted as both, a visual and an informational aspect in the experiment. Informational elements on the other hand have little effect, especially when the context is written in a foreign language. However, informational elements affected participants who were choosing chocolates for a group of friends. A unique finding was the importance of kawaii (cuteness) to Japanese consumers.