78 resultados para Printed organic electronics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main advantage of organic electronics over the more widespread inorganic counterparts lies not in the electrical performance, but rather in the solution processability that opens up for low-cost flexible electronics (e.g. displays, sensors and smart tags) fabricated by using printing techniques. Replacing the commonly used laboratory-scale fabrication techniques with mass-printing techniques is, however, truly challenging, especially when low-voltage operation is required. In this thesis it is, nevertheless, demonstrated that low-voltage organic transistors can be fully printed with a similar performance to that of transistors made by laboratory scale techniques. The use of an ion-modulated type of organic field effect transistor (OFET) not only enabled low-voltage operation and printability, but was also found to result in low sensitivity to the surface roughness of the substrate. This allows not only the use of low-cost plastic substrates, but even the use of paper as a substrate. However, while absorption into the porous paper surface is advantageous in a graphical printing process, by reducing the spreading and the coffee-stain effect and by improving the adhesion, it provides great challenges when applying thin electrically active layers. In spite of these difficulties we were able to demonstrate the first low-voltage OFET to be fabricated on paper. We have also shown that low-cost incandescent lamps can be used for sintering printed metal-nanoparticles, and that the process was especially suitable on paper and compatible with a roll-to-roll manufacturing process.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Mass-produced paper electronics (large area organic printed electronics on paper-based substrates, “throw-away electronics”) has the potential to introduce the use of flexible electronic applications in everyday life. While paper manufacturing and printing have a long history, they were not developed with electronic applications in mind. Modifications to paper substrates and printing processes are required in order to obtain working electronic devices. This should be done while maintaining the high throughput of conventional printing techniques and the low cost and recyclability of paper. An understanding of the interactions between the functional materials, the printing process and the substrate are required for successful manufacturing of advanced devices on paper. Based on the understanding, a recyclable, multilayer-coated paper-based substrate that combines adequate barrier and printability properties for printed electronics and sensor applications was developed in this work. In this multilayer structure, a thin top-coating consisting of mineral pigments is coated on top of a dispersion-coated barrier layer. The top-coating provides well-controlled sorption properties through controlled thickness and porosity, thus enabling optimizing the printability of functional materials. The penetration of ink solvents and functional materials stops at the barrier layer, which not only improves the performance of the functional material but also eliminates potential fiber swelling and de-bonding that can occur when the solvents are allowed to penetrate into the base paper. The multi-layer coated paper under consideration in the current work consists of a pre-coating and a smoothing layer on which the barrier layer is deposited. Coated fine paper may also be used directly as basepaper, ensuring a smooth base for the barrier layer. The top layer is thin and smooth consisting of mineral pigments such as kaolin, precipitated calcium carbonate, silica or blends of these. All the materials in the coating structure have been chosen in order to maintain the recyclability and sustainability of the substrate. The substrate can be coated in steps, sequentially layer by layer, which requires detailed understanding and tuning of the wetting properties and topography of the barrier layer versus the surface tension of the top-coating. A cost competitive method for industrial scale production is the curtain coating technique allowing extremely thin top-coatings to be applied simultaneously with a closed and sealed barrier layer. The understanding of the interactions between functional materials formulated and applied on paper as inks, makes it possible to create a paper-based substrate that can be used to manufacture printed electronics-based devices and sensors on paper. The multitude of functional materials and their complex interactions make it challenging to draw general conclusions in this topic area. Inevitably, the results become partially specific to the device chosen and the materials needed in its manufacturing. Based on the results, it is clear that for inks based on dissolved or small size functional materials, a barrier layer is beneficial and ensures the functionality of the printed material in a device. The required active barrier life time depends on the solvents or analytes used and their volatility. High aspect ratio mineral pigments, which create tortuous pathways and physical barriers within the barrier layer limit the penetration of solvents used in functional inks. The surface pore volume and pore size can be optimized for a given printing process and ink through a choice of pigment type and coating layer thickness. However, when manufacturing multilayer functional devices, such as transistors, which consist of several printed layers, compromises have to be made. E.g., while a thick and porous top-coating is preferable for printing of source and drain electrodes with a silver particle ink, a thinner and less absorbing surface is required to form a functional semiconducting layer. With the multilayer coating structure concept developed in this work, it was possible to make the paper substrate suitable for printed functionality. The possibility of printing functional devices, such as transistors, sensors and pixels in a roll-to-roll process on paper is demonstrated which may enable introducing paper for use in disposable “onetime use” or “throwaway” electronics and sensors, such as lab-on-strip devices for various analyses, consumer packages equipped with product quality sensors or remote tracking devices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Roll-to-Roll process makes it possible to print electronic products continuously onto a uniform substrate. Printing components on flexible surfaces can bring down the costs of simple electronic devices such as RFID tags, antennas and transistors. The possibility of quickly printing flexible electronic components opens up a wide array of novel products previously too expensive to produce on a large scale. Several different printing methods can be used in Roll-to-Roll printing, such as gravure, spray, offset, flexographic and others. Most of the methods can also be mixed in one production line. Most of them still require years of research to reach a significant commercial level. The research for this thesis was carried out at the Konkuk University Flexible Display Research Center (KU-FDRC) in Seoul, Korea. A system using Roll-to-Roll printing requires that the motion of the web can be controlled in every direction in order to align different layers of ink properly. Between printers the ink is dried with hot air. The effects of thermal expansion on the tension of the web are studied in this work, and a mathematical model was constructed on Matlab and Simulink. Simulations and experiments lead to the conclusion that the thermal expansion of the web has a great influence on the tension of the web. Also, experimental evidence was gained that the particular printing machine used for these experiments at KU-FDRC may have a problem in controlling the speeds of the cylinders which pull the web.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quality inspection and assurance is a veryimportant step when today's products are sold to markets. As products are produced in vast quantities, the interest to automate quality inspection tasks has increased correspondingly. Quality inspection tasks usuallyrequire the detection of deficiencies, defined as irregularities in this thesis. Objects containing regular patterns appear quite frequently on certain industries and science, e.g. half-tone raster patterns in the printing industry, crystal lattice structures in solid state physics and solder joints and components in the electronics industry. In this thesis, the problem of regular patterns and irregularities is described in analytical form and three different detection methods are proposed. All the methods are based on characteristics of Fourier transform to represent regular information compactly. Fourier transform enables the separation of regular and irregular parts of an image but the three methods presented are shown to differ in generality and computational complexity. Need to detect fine and sparse details is common in quality inspection tasks, e.g., locating smallfractures in components in the electronics industry or detecting tearing from paper samples in the printing industry. In this thesis, a general definition of such details is given by defining sufficient statistical properties in the histogram domain. The analytical definition allowsa quantitative comparison of methods designed for detail detection. Based on the definition, the utilisation of existing thresholding methodsis shown to be well motivated. Comparison of thresholding methods shows that minimum error thresholding outperforms other standard methods. The results are successfully applied to a paper printability and runnability inspection setup. Missing dots from a repeating raster pattern are detected from Heliotest strips and small surface defects from IGT picking papers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monitoring and control of hydrogen sulfide (H2S) level is of great interest for a wide range of application areas including food quality control, defense and antiterrorist applications and air quality monitoring e.g. in mines. H2S is a very poisonous and flammable gas. Exposure to low concentrations of H2S can result in eye irritation, a sore throat and cough, shortness of breath, and fluid retention in the lungs. These symptoms usually disappear in a few weeks. Long-term, low-level exposure may result in fatigue, loss of appetite, headache, irritability, poor memory, and dizziness. Higher concentrations of 700 - 800 ppm tend to be fatal. H2S has a characteristic smell of rotten egg. However, because of temporary paralysis of olfactory nerves, the smelling capability at concentrations higher than 100 ppm is severely compromised. In addition, volatile H2S is one of the main products during the spoilage of poultry meat in anaerobic conditions. Currently, no commercial H2S sensor is available which can operate under anaerobic conditions and can be easily integrated in the food packaging. This thesis presents a step-wise progress in the development of printed H2S gas sensors. Efforts were made in the formulation, characterization and optimization of functional printable inks and coating pastes based on composites of a polymer and a metal salt as well as a composite of a metal salt and an organic acid. Different processing techniques including inkjet printing, flexographic printing, screen printing and spray coating were utilized in the fabrication of H2S sensors. The dispersions were characterized by measuring turbidity, surface tension, viscosity and particle size. The sensing films were characterized using X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy and an electrical multimeter. Thin and thick printed or coated films were developed for gas sensing applications with the aim of monitoring the H2S concentrations in real life applications. Initially, a H2S gas sensor based on a composite of polyaniline and metal salt was developed. Both aqueous and solvent-based dispersions were developed and characterized. These dispersions were then utilized in the fabrication of roll-to-roll printed H2S gas sensors. However, the humidity background, long term instability and comparatively lower detection limit made these sensors less favourable for real practical applications. To overcome these problems, copper acetate based sensors were developed for H2S gas sensing. Stable inks with excellent printability were developed by tuning the surface tension, viscosity and particle size. This enabled the formation of inkjet-printed high quality copper acetate films with excellent sensitivity towards H2S. Furthermore, these sensors showed negligible humidity effects and improved selectivity, response time, lower limit of detection and coefficient of variation. The lower limit of detection of copper acetate based sensors was further improved to sub-ppm level by incorporation of catalytic gold nano-particles and subsequent plasma treatment of the sensing film. These sensors were further integrated in an inexpensive wirelessly readable RLC-circuit (where R is resistor, L is inductor and C is capacitor). The performance of these sensors towards biogenic H2S produced during the spoilage of poultry meat in the modified atmosphere package was also demonstrated in this thesis. This serves as a proof of concept that these sensors can be utilized in real life applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Haihtuvien orgaanisten yhdisteiden muodostuminen kuivikkeissa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Orgaanisten happojen vaikutus porsasrehun maittavuuteen