5 resultados para time-resolved fast spectroscopy

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Use of bridge deck overlays is important in maximizing bridge service life. Overlays can replace the deteriorated part of the deck, thus extending the bridge life. Even though overlay construction avoids the construction of a whole new bridge deck, construction still takes significant time in re-opening the bridge to traffic. Current processes and practices are time-consuming and multiple opportunities may exist to reduce overall construction time by modifying construction requirements and/or materials utilized. Reducing the construction time could have an effect on reducing the socioeconomic costs associated with bridge deck rehabilitation and the inconvenience caused to travelers. This work included three major tasks with literature review, field investigation, and laboratory testing. Overlay concrete mix used for present construction takes long curing hours and therefore an investigation was carried out to find fast-curing concrete mixes that could reduce construction time. Several fast-cuing concrete mixes were found and suggested for further evaluation. An on-going overlay construction project was observed and documented. Through these observations, several opportunities were suggested where small modifications in the process could lead to significant time savings. With current standards of the removal depth of substrate concrete in Iowa, it takes long hours for the removal process. Four different laboratory tests were performed with different loading conditions to determine the necessary substrate concrete removal depth for a proper bond between the substrate concrete and the new overlay concrete. Several parameters, such as failure load, bond stress, and stiffness, were compared for four different concrete removal depths. Through the results and observations of this investigation several conclusions were made which could reduce bridge deck overlay construction time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report is a supplement to one issued in late summer 1986 which covered construction on U.S. 71, in Buena Vista County Iowa. The work involved rehabilitation of an older 20 feet wide pavement by placing a four inch thick bonded concrete overlay monolithically with two feet of widening on each side. The work was performed on one lane at a time while construction traffic and limited public traffic used the adjacent traffic lane. When work on the first lane was complete traffic was moved onto it and rehabilitation was completed on the second lane. This report covers the condition of the rehabilitated roadway in May 1987 after the first winter. The condition is described by visual observations, core conditions, and various test results including core compressive strength, direct shear tests on cores for bond strength, profilometer results and delamtect test results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1987, 1.5 km (0.935 mi.) of Spruce Hill Drive in Bettendorf, Iowa was reconstructed. It is an arteriel street with commercial usage on both termini with single family residential dwellings along most of the project. A portland cement concrete (PCC) pavement design was selected, but a 14 day curing period would have been an undue hardship on the residents and commercial businesses. An Iowa DOT Class F fast track concrete was used so the roadway could be used in 7 to 10 days. The Class F concrete with fly ash was relatively sticky and exhibited early stiffening problems and substantial difficulty in obtaining the target entrained air content of 6.5%. These problems were never completely resolved on the project. Annual visual field reviews were conducted through 1996. In November 1991, severe premature distress was identified on the westbound two lanes of the full width replacement. The most deteriorated section in a sag vertical, 152 m (500 ft.) of the westbound roadway, was replaced in 1996. Premature distress has been identified on a dozen other conventional PCC Iowa pavements constructed between 1983 and 1989, so the deterioration may not be related to the fact that it was fast track pavement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are projects where opening the pavement to traffic in less than the 5 to 7 days is needed, but an 8 to 12 hour opening time is not necessary. The study examined fast track concrete with Type I cement and admixtures. The variables studied were: (1) cure temperature, (2) cement brand, (3) accelerators, and (4) water reducers. A standard water reducer and curing blankets appear to be effective at producing a 24 hour to 36 hour opening strength. An accelerator and/or high range water reducer may produce opening strength in 12 to 24 hours. Calcium chloride was most effective at achieving high-early strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two lanes of a major four lane arterial street needed to be reconstructed in Cedar Rapids, Iowa. The traffic volumes and difficulty of detouring the traffic necessitated closure for construction be held to an absolute minimum. Closure of the intersections, even for one day, was not politically feasible. Therefore, Fast Track and Fast Track II was specified for the project. Fast Track concrete paving has been used successfully in Iowa since 1986. The mainline portion of the project was specified to be Fast Track and achieved the opening strength of 400 psi in less than twelve hours. The intersections were allowed to be closed between 6 PM and 6 AM. This could occur twice - once to remove the old pavement and place the base and temporary surface and the second time to pave and cure the new concrete. The contractor was able to meet these restrictions. The Fast Track II used in the intersections achieved the opening strength of 350 psi in six to seven hours. Two test sections were selected in the mainline Fast Track and two intersections were chosen to test the Fast Tract II. Both flexural and compression specimens were tested. Pulse velocity tests were conducted on the pavement and test specimens. Maturity curves were developed through monitoring of the temperatures. Correlations were performed between the maturity and pulse velocity and the flexural strengths. The project was successful in establishing the feasibility of construction at night, with no disruption of traffic in the daytime, using fast Track II. Both the Fast Track II pavements were performing well four years after construction.