3 resultados para real-time system

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The air void analyzer (AVA) with its independent isolation base can be used to accurately evaluate the air void system—including volume of entrained air, size of air voids, and distribution of air voids—of fresh portland cement concrete (PCC) on the jobsite. With this information, quality control adjustments in concrete batching can be made in real time to improve the air void system and thus increase freeze-thaw durability. This technology offers many advantages over current practices for evaluating air in concrete.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of rural demand-responsive transit is changing, and with that change is coming an increasing need for technology. As long as rural transit was limited to a type of social service transportation for a specific set of clients who primarily traveled in groups to common meal sites, work centers for the disabled, or clinics in larger communities, a preset calendar augmented by notes on a yellow legal pad was sufficient to develop schedules. Any individual trips were arranged at least 24 to 48 hours ahead of time and were carefully scheduled the night before in half-hour or twenty-minute windows by a dispatcher who knew every lane in the service area. Since it took hours to build the schedule, any last-minute changes could wreak havoc with the plans and raise the stress level in the dispatch office. Nevertheless, given these parameters, a manual scheduling system worked for a small demand-responsive operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to limited budgets and reduced inspection staff, state departments of transportation (DOTs) are in need of innovative approaches for providing more efficient quality assurance on concrete paving projects. The goal of this research was to investigate and test new methods that can determine pavement thickness in real time. Three methods were evaluated: laser scanning, ultrasonic sensors, and eddy current sensors. Laser scanning, which scans the surface of the base prior to paving and then scans the surface after paving, can determine the thickness at any point. Also, scanning lasers provide thorough data coverage that can be used to calculate thickness variance accurately and identify any areas where the thickness is below tolerance. Ultrasonic and eddy current sensors also have the potential to measure thickness nondestructively at discrete points and may result in an easier method of obtaining thickness. There appear to be two viable approaches for measuring concrete pavement thickness during the paving operation: laser scanning and eddy current sensors. Laser scanning has proved to be a reliable technique in terms of its ability to provide virtual core thickness with low variability. Research is still required to develop a prototype system that integrates point cloud data from two scanners. Eddy current sensors have also proved to be a suitable alternative, and are probably closer to field implementation than the laser scanning approach. As a next step for this research project, it is suggested that a pavement thickness measuring device using eddy current sensors be created, which would involve both a handheld and paver-mounted version of the device.