18 resultados para longitudinal zones
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This document provides language that can be used by an Owner-Agency to develop materials and construction specifications with the objective of reducing tire/pavement noise. While the practices described herein are largely prescriptive, they have been demonstrated to increase the likelihood of constructing a durable, quieter concrete surface. Guidance is provided herein for texturing the concrete surface since texture geometry has a paramount effect on tire/pavement noise. Guidance for curing is also provided to improve strength and durability of the surface mortar, and thus to improve texture durability.
Resumo:
The purpose of this review and analysis is to provide a basic understanding of the issues related to worldwide hypoxic zones and the range of economic questions sorely in need of answers. We begin by describing the causes and extent of hypoxic zones worldwide, followed by a review of the evidence concerning ecological effects of the condition and impacts on ecosystem services. We describe what is known about abatement options and cost effective policy design before turning to an analysis of the large, seasonally recurring hypoxic zone in the Gulf of Mexico. We advance the understanding of this major ecological issue by estimating the relationship between pollutants (nutrients) and the areal extent of the hypoxic zone. This “production function” relationship suggests that both instantaneous and legacy contributions of nutrients contribute to annual predictions of the size of the zone, highlighting concerns that ecologists have raised about lags in the recovery of the system and affirms the importance of multiple nutrients as target pollutants. We conclude with a discussion of critical research needs to provide input to policy formation.
Resumo:
Ramp metering has been successfully implemented in many states to improve traffic operations on freeways. Studies have documented the positive mobility and safety benefits of ramp metering. However, there have been no studies on the use of ramp metering for work zones. This report documents the results from the first deployment of temporary ramp meters in work zones in the United States. Temporary ramp meters were deployed at seven urban short-term work zones in Missouri. Safety measures such as driver compliance, merging behavior, and speed differentials were extracted from video-based field data. Mobility analysis was conducted using a calibrated simulation model and the total delays were obtained for under capacity, at capacity, and over capacity conditions. This evaluation suggests that temporary ramp meters should only be deployed at work zone locations where there is potential for congestion and turned on only during above-capacity conditions. The compliance analysis showed that non-compliance could be a major safety issue in the deployment of temporary ramp meters for under-capacity conditions. The use of a three-section instead of a traditional two-section signal head used for permanent ramp metering produced significantly higher compliance rates. Ramp metering decreased ramp platoons by increasing the percentage of single-vehicle merges to over 70% from under 50%. The accepted-merge-headway results were not statistically significant even though a slight shift towards longer headways was found with the use of ramp meters. Mobility analysis revealed that ramp metering produced delay savings for both mainline and ramp vehicles for work zones operating above capacity. On average a 24% decrease in total delay (mainline plus ramp) at low truck percentage and a 19% decrease in delay at high truck percentage conditions resulted from ramp metering.
Resumo:
Variable advisory speed limit (VASL) systems could be effective at both urban and rural work zones, at both uncongested and congested sites. At uncongested urban work zones, the average speeds with VASL were lower than without VASL. But the standard deviation of speeds with VASL was higher. The increase in standard deviation may be due to the advisory nature of VASL. The speed limit compliance with VASL was about eight times greater than without VASL. At the congested sites, the VASL were effective in making drivers slow down gradually as they approached the work zone, reducing any sudden changes in speeds. Mobility-wise the use of VASL resulted in a decrease in average queue length, throughput, number of stops, and an increase in travel time. Several surrogate safety measures also demonstrated the benefits of VASL in congested work zones. VASL deployments in rural work zones resulted in reductions in mean speed, speed variance, and 85th percentile speeds downstream of the VASL sign. The study makes the following recommendations based on the case studies investigated: 1. The use of VASL is recommended for uncongested work zones to achieve better speed compliance and lower speeds. Greater enforcement of regulatory speed limits could help to decrease the standard deviation in speeds; 2. The use of VASL to complement the static speed limits in rural work zones is beneficial even if the VASL is only used to display the static speed limits. It leads to safer traffic conditions by encouraging traffic to slow down gradually and by reminding traffic of the reduced speed limit. A well-designed VASL algorithm, like the P5 algorithm developed in this study, can significantly improve the mobility and safety conditions in congested work zones. The use of simulation is recommended for optimizing the VASL algorithms before field deployment.
Resumo:
Research is reported which attempted to identify construction procedures that will provide an improved centerline joint on asphalt concrete pavements. Various construction procedures and their evaluation are described. Core densities were made and visual inspections were made 3 years after construction. Center cracking was measured at 4, 5, and 6 years. The only procedure to rank the same when comparing cracking and density (delete the 1:1 slope shoe on the edge) is described. This procedure had the highest average density and also the least cracking through 1985. This method provided the best performance for 4 years after construction and involved the removal of the 1:1 slope shoe from the paver when placing the surface course. This method had 9.0% cracked after 4 years and 100% cracked after 6 years of service.
Resumo:
The main consideration for base construction under the pavement, in the design of Iowa's interstate, was structural capacity. The material was dense graded with the aim of supporting the pavement and distributing the load as it is transferred to the underlying grade. The drainage characteristics of the base was apparently not given adequate consideration. On jointed portland cement concrete pavement, the water that is trapped immediately beneath the pavement causes severe problems. The traffic causes rapid movement of the water resulting in the hydraulic pressures or "pumping" (movement and redeposit of base fine material), further resulting in faulting between individual slabs. The objective of this evaluation is to determine if longitudinal subdrains are effective in preventing or reducing pumping, faulting and related deterioration. Results suggest that, based upon the flow from the outlets observed during periodic checks and evidence of water flow at the outlets, it appears that to date the subdrains are effective in draining the subbase and subgrade. Because of the limited data available at this time, however, the pavement condition and faulting results are inconclusive.
Resumo:
The joint between two lanes of asphalt pavement is often the first area of a roadway which shows signs of deterioration and requires maintenance. As the final lift of hot asphalt is being placed in a construction project, it is being forced p against the adjoining lane of cold asphalt, forming the longitudinal joint. The mating of the two lanes, to form a high quality seal, is often not fully successful and later results in premature stripping or raveling as water enters the unsealed joint. The application of a hot poured rubberized asphaltic joint sealant along the joint face in the final stage of construction should help to form a watertight joint seal. A new product, especially formulated for the longitudinal joint in asphalt pavements was proposed to improve joint sealing. The following describes the experimental application of the new product, Crafco, PN 34524.
Resumo:
There are many miles of portland cement concrete pavement in Iowa that due to normal wear, and in some cases accelerated wear from studded tires, the surface has become polished resulting in less than desirable friction values. Retexturing the surface may be an economical way to re-establish desirable friction values. Retexturing by grinding with diamond blades and transverse grooving with diamond blades are two methods of rehabilitating p.c.c. surfaces. MU Inc. of Lebanan, Tennessee proposed to provide without charge to the Iowa Department of Transportation, one 1500 ft x 12 ft section each of three methods of texturing. They are longitudinal grinding, transverse grooving and longitudinal grinding followed by transverse grooving. A section of 1500 feet is needed to properly evaluate a texturing method. It was decided by Iowa DOT personnel that due to possible differential friction it would be undesirable to texture only one lane. The decision was made to do test sections of 1500 ft x 24 ft with the cost of the additional texturing paid by the Iowa DOT. Iowa also has areas where the p.c.c. pavement has faulted at the joints and cracks which results in poor riding quality. Methods of correcting the faulting are to underseal the pavement where needed and/or grinding the surface to eliminate the faulted areas. It was decided to include in this research project a section for profiling by grinding.
Resumo:
This report is a brief summary of research on the effect of longitudinal drains on subgrade support. The Iowa DOT began installing longitudinal subdrains at a depth of 24" in 1978. The trend in Iowa has been to deeper longitudinal drains with the present standard being 48" deep. A very limited amount of data would indicate that the deeper longitudinal drains are providing a greater benefit to the subgrade support value. The 24# deep drains of the Poweshiek Interstate 80 project yielded a spring subgrade support value of 165. The 30" deep drains on Pottawattamie Interstate 80 yielded a K value of 170 while the 48"deep drains on Cass County Interstate 80 yielded a K value of 210. This limited amount of data would indicate that the deeper drains provide greater benefit to improvement of the subgrade support values.
Resumo:
The main consideration for base construction under the pavement, in the design of Iowa's interstate, was structural capacity. The material was dense graded with the aim of supporting the pavement and distributing the load as it is transferred to the underlying grade. The drainage characteristics of the base was apparently not given adequate consideration. On jointed portland cement concrete pavement, the water that is trapped immediately beneath the pavement causes severe problems. The traffic causes rapid movement of the water resulting in the hydraulic pressures or "pumping" (movement and redeposit of base fine material), further resulting in faulting between individual slabs. The objective of this evaluation is to determine if longitudinal subdrains are effective in preventing or reducing pumping, faulting and related deterioration. Results suggest that, based upon the flow from the outlets observed during periodic checks and evidence of water flow at the outlets, it appears that to date the subdrains are effective in draining the subbase and subgrade. Because of the limited data available at this time, however, the pavement condition and faulting results are inconclusive.
Resumo:
Construction of the interstate highway system began in 1956. This U.S. network of highway consists of more than 41,000 miles with 790 miles in Iowa. There have been many benefits of the controlled access roadway, but probably the most significant is the improved safety for the motorist. In Iowa, we have always endeavored to utilize quality locally available materials in our construction using the most economical or cost effective methods. Obviously when the effort is to build a cost effective system, there will be some portions of the network that will not perform as well as expected. In the design of our interstate, the main consideration for base construction under the pavement was structural capacity. The material was dense graded with the aim of supporting the pavement and distributing the load as it is transferred to the underlying grade. The drainage characteristic of the base was apparently not given adequate consideration. On jointed portland cement concrete (pcc) pavement, the water that is trapped immediately beneath the pavement causes severe problems. The traffic causes rapid movement of the water resulting in the hydraulic pressures or "pumping" (movement and redeposit of base fine material) resulting in faulting between individual slabs. Recognizing the need for maintaining this large national highway network, the Federal Highway Administration has initiated a funding program for resurfacing, restoration and rehabilitation (3R). Many miles of the system are more than 20 years old and in need of major maintenance. This new 3R Program necessitated a complete inventory of the Iowa interstate system to establish priorities and to identify those sections in need of immediate remedial treatments.
Resumo:
Many states are striving to keep their deer population to a sustainable and controllable level while maximizing public safety. In Iowa, measures to control the deer population include annual deer hunts and special deer herd management plans in urban areas. While these plans may reduce the deer population, traffic safety in these areas has not been fully assessed. Using deer population data from the Iowa Department of Natural Resources and data on deer-vehicle crashes and deer carcass removals from the Iowa Department of Transportation, the authors examined the relationship between deer-vehicle collisions, deer density, and land use in three urban areas in Iowa that have deer management plans in place (Cedar Rapids, Dubuque, and Iowa City) over the period 2002 to 2007. First, a comparison of deer-vehicle crash counts and deer carcass removal counts was conducted at the county level. Further, the authors estimated econometric models to investigate the factors that influence the frequency and severity of deer-vehicle crashes in these zones. Overall, the number of deer carcasses removed on the primary roads in these counties was greater than the number of reported deervehicle crashes on those roads. These differences can be attributed to a number of reasons, including variability in data reporting and data collection practices. In addition, high rates of underreporting of crashes were found on major routes that carry high volumes of traffic. This study also showed that multiple factors affect deer-vehicle crashes and corresponding injury outcomes in urban management zones. The identified roadway and non-roadway factors could be useful for identifying locations on the transportation system that significantly impact deer species and safety and for determining appropriate countermeasures for mitigation. Efforts to reduce deer density adjacent to roads and developed land and to provide wider shoulders on undivided roads are recommended. Improving the consistency and accuracy of deer carcass and deer-vehicle collision data collection methods and practices is also desirable.
Resumo:
In conventional construction practices, a longitudinal joint is sawed in a PCC (Portland Cement Concrete) pavement to control concrete shrinkage cracking between two lanes of traffic. Sawing a joint in hardened concrete is an expensive and time consuming operation. The longitudinal joint is not a working joint (in comparison to a transverse joint) as it is typically tied with a tie bar at 30 inch spacing. The open joint reservoir, left by the saw blade, typically is filled or sealed with a durable crack sealant to keep incompressibles and water from getting into the joint reservoir. An experimental joint forming knife has been developed. It is installed under the paving machine to form the longitudinal joint in the wet concrete as a part of the paving process. Through this research method, forming a very narrow longitudinal joint during the paving process, two conventional paving operations can be eliminated. Joint forming eliminates the need of the joint sawing operation in the hard concrete, and as the joint that is formed does not leave a wide-open reservoir, but only a hairline crack, it does not need the joint filling or sealing operation. Therefore, the two conventional longitudinal joint sawing and sealing operations are both being eliminated by this innovation. A laboratory scale prototype joint forming knife was built and tested, initially forming joints in small concrete beams. The results were positive so the method was proposed for field testing. Initial field tests were done in the construction season of 2001, limited to one paving contractor. A number of modifications were made to the knife throughout the field tests. About 3000 feet of longitudinal joint was formed in 2001. Additional testing was done in the 2002 construction season, working with the same contractor. About 150,000 feet of longitudinal joint was formed in 2002. Evaluations of the formed joints were done to determine longitudinal joint hairline crack development rate and appearance. Additional tests will be done in the next construction season to improve or perfect the longitudinal joint forming technique.
Resumo:
The primary objective of this project was to determine the effect of bridge width on deck cracking in bridges. Other parameters, such as bridge skew, girder spacing and type, abutment type, pier type, and number of bridge spans, were also studied. To achieve the above objectives, one bridge was selected for live-load and long-term testing. The data obtained from both field tests were used to calibrate a three-dimensional (3D) finite element model (FEM). Three different types of loading—live loading, thermal loading, and shrinkage loading—were applied. The predicted crack pattern from the FEM was compared to the crack pattern from bridge inspection results. A parametric study was conducted using the calibrated FEM. The general conclusions/recommendations are as follows: -- Longitudinal and diagonal cracking in the deck near the abutment on an integral abutment bridge is due to the temperature differences between the abutment and the deck. Although not likely to induce cracking, shrinkage of the deck concrete may further exacerbate cracks developed from thermal effects. -- Based upon a limited review of bridges in the Iowa DOT inventory, it appears that, regardless of bridge width, longitudinal and diagonal cracks are prevalent in integral abutment bridges but not in bridges with stub abutments. -- The parametric study results show that bridge width and skew have minimal effect on the strain in the deck bridge resulting from restrained thermal expansion. -- Pier type, girder type, girder spacing, and number of spans also appear to have no influence on the level of restrained thermal expansion strain in the deck near the abutment.
Resumo:
Nationwide, over 1,000 fatalities and 40,000 injuries occur annually in work zones, which include both construction zones and areas where maintenance is performed. The majority (85%) of work zone accidents result from unsafe driver behavior, and vehicle speed is often a factor in work zone crashes. In order to address speed and driver behavior near work zones, roadway agencies have developed different traffic calming measures. The objective of this research is to summarize the effectiveness of different traffic calming treatments for reducing speeds in work zones. This project 1. identified work zone traffic calming treatments for which information has not been well summarized, 2. identified state of the art and new technologies for work zone traffic calming, and 3. synthesized research related to items 1 and 2