8 resultados para lenthic water bodies
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Sands Timber Lake is a 60 acre man made impoundment near Blockton, Iowa. The lake is the centerpiece of a 235 acre park, which is owned and managed by the Taylor County Conservation Board. The park is equipped with modern campsites, hiking trails, picnic areas, and a playground. Bordering the western shoreline of the lake is a beautiful hardwood timber which inspired the parks name. Sands Timber Lake has a 4,100 acre drainage area comprised of timber, grassland, and row crop. The lake is fed by four large classic gullies which branch off into many smaller gullies dissecting the drainage area. Since construction in 1993, Sands Timber Lake has been an extremely poor fishery. In 2006 Sands Timber Lake was added to the EPA’s 303d list of impaired water bodies. Turbid water was identified as the primary stressor. In 2007 a bathometric map was made which depicts lake-bottom contours and elevations which, when compared to the original survey of the area, revealed an alarming amount of siltation. What was once a twenty-three foot deep lake in 1994 has now been reduced to a mere fourteen feet. In addition to depth being lost, the lake’s surface has been reduced by nearly ten acres, destroying vital fish habitats. Local interest in preserving and enhancing the lake has led to the completion of a thorough watershed assessment and treatment plan. Included in the plan are several elements, the first being upland treatment. Locals are insistent that if conservation is not implemented in the watershed the lake will continue to degrade and park usage will continue to decline.
Resumo:
In 2004 Walnut Creek was placed on the 303d list of impaired water bodies for lack of aquatic life with biological causes. Sediment from farmland as well as the stream banks was listed as the most likely stressor. In response to this listing a preliminary watershed assessment was completed by the six counties which have land in the Walnut Creek watershed. Walnut Creek flows through portions of Shelby, Pottawattamie, Montgomery, Mills, Page, and Fremont Counties before reaching its confluence with the West Nishnabotna River. The preliminary study assessed resource concerns and evaluated anticipated landowner participation levels for the six Huc 12 sub-watersheds which divide the Walnut Creek basin. These preliminary assessments revealed a priority sub-watershed which lies between US Hwy 6 and Hwy 34. A development grant was then funded by the Division of Soil Conservation to conduct a detailed assessment of this area. The detailed assessment involved an assessment of the uplands as well as the stream itself. A better understanding of the resource concerns was gained through the assessment, allowing for a comprehensive watershed plan to be developed. A variety of best management practices will be necessary for our project to be a success, many of which will be funded by other sources besides the WIRB. This grant is the first request for funding submitted by the East Pottawattamie and Montgomery SWCDs’. This grant will serve as the first critical step in building what is destined to be a true watershed success story.
Resumo:
Silver Lake is located in an 18,053-acre watershed. The watershed is intensively farmed with almost all of the wetlands being previously drained or degraded over the last 50 years. Silver Lake is listed on the State of Iowa’s impaired water bodies list due to sediment and high nutrient level. Silver Lake is also known be in the bottom 25 percentile of Iowa’s lakes due Secchi disk readings and Chlorophyll a level. Farming in the watershed is the principle concern and cause for many of the problems occurring in Silver Lake currently with 78% of the watershed being intensively farmed. There are two major drainage ditches that have been used to drain the major wetlands and sloughs that, at one time, filtered the water and slowed it down before it reached Silver Lake. With these two major drainage ditches, water is able to reach the lake much faster and unfiltered than it once did historically. The loss of 255 restorable wetland basins to row crop production has caused serious problems in Silver Lake. These wetland basins once slowed and filtered water as it moved through the watershed. With their loss over the last 50 years that traditional drainage no longer occurs. We propose to create a Wetland Reserve Program incentive project to make WRP a more attractive option to landowners within the watershed. The incentive will be based on the amount of sediment delivery reduction to the lake, therefore paying a greater payment for a greater benefit to the lake. The expected result of this project is the restoration of over 250 acres of wetland basins with an associated 650 acres of upland buffers. The benefit for these wetlands and buffers would be reduced sediment, reduced nutrients, and slowed waters to the lake.
Resumo:
Holiday Lake is included in the Walnut Creek watershed, which is listed on the 303(d) list of impaired water bodies. Research indicates that the causes of impairment are sedimentation and habitat alterations. To improve water quality, the goals of this project are to reduce the sediment delivery into Holiday Lake by 50% and assist in educating watershed residents about cost-effective ways to control sediment and nutrient contaminates. The best management practices will be installed to filter the water, reducing sediment and chemical loading into the lake. When all practices are installed, nearly 100% of the lake’s drainage area will be controlled.
Resumo:
A targeted approach is being used in the Iowa Great Lakes Watershed with a keystone project featured within this project application in the heavily urbanized Center Lake Watershed. As identified in the Iowa Great Lakes Watershed Management Plan, urban runoff is the only remaining watershed concern in the Center Lake Watershed as the map in the attachments clearly shows. Fully one third of the watershed concerns of Center Lake will be treated through the installation of 7 keystone urban practices and will remove 63 pounds of phosphorous from entering the lake annually. Due to the interconnectedness of the Iowa Great Lakes (IGL), the watershed has been broken down into sub units called Resource Management Areas (RMA's) for priority practice implementation. This project will mesh with the existing Iowa Great Lakes Watershed Management Plan by reducing pollutant loads from the highest priority RMA's which are resulting in impaired water bodies. The majority of the funding needed for the specific practices specified in this proposal has already been secured through the Iowa DNR Section 319 and Lake Restoration Programs, The Water Quality Commission and the City of Spirit Lake. This funding request will simply bring the overall cost of these keystone practices into the range of affordability for the committed funders and the City of Spirit Lake
Resumo:
In 2010 a group of farmers in the Dry Run Creek watershed, an Iowa High Quality Water Resource, formed the Dry Run Creek Watershed Improvement Association to learn more about and implement solutions to remedy a bacteria impairment in their stream. Through a partnership with Luther College, Iowa DNR Watershed Monitoring and Assessment and Iowa State University Extension the farmers were able to conduct an assessment of their stream and watershed. The assessment showed multiple potential sources of bacteria, dependent on whether water samples were collected following rain events or during dry conditions. This project will allow watershed farmers to implement solutions to reduce bacteria delivery during both wet and dry weather. Funding will be targeted to feedlot runoff control improvements, cover crops and vegetative filters, manure management strategies and livestock stream access. The council intends to continue intensive water monitoring to determine whether the strategies are successful. Research shows the bacteria reduction in water bodies can be seen relatively quickly, within 1-2 years, compared to other types of impairments.
Lake LaVerne Watershed Project Progress Report: Project Number 1415-007, Final Report, June 30, 2016
Resumo:
This application targets a critical need for low maintenance and inexpensive treatment solutions to encourage landowners and resource managers to enhance the water quality of small ponds and lakes. Many rural and urban small ponds and lakes across Iowa and the region have eutrophic conditions with high levels of nutrients and low levels of oxygen. Story SWCD teamed with Iowa State University (ISU) researchers propose to address this need through the construction and monitoring of a vegetated floating island (VFI) system on ISU's iconic Lake LaVerne. VFI's are hydroponically-vegetated islands that reduce nutrient loading directly from pond and lake water (rather than from soil adjacent to the pond). Urban watershed assessment on the ISU campus has already led to reductions in stormwater runoff to the lake but eutrophic conditions persist and are well documented. The VFI will function as a public art attraction for the entire 2015 growing season during which time monitoring will occur to quantify nitrogen, phosphorus and carbon changes in the lake. Tens of thousands of visitors to the ISU campus and Lake LaVerne will interact with this installation using promotional signage on site, public events and interactive social media throughout the project. Water quality and vegetation analysis will quantify nutrient uptake by the island vegetation and thus determine its effectiveness for use in other similar water bodies in Iowa.
Resumo:
In 2010 a group of farmers in the Dry Run Creek watershed, an Iowa High Quality Water Resource, formed the Dry Run Creek Watershed Improvement Association to learn more about and implement solutions to remedy a bacteria impairment in their stream. Through a partnership with Luther College, Iowa DNR Watershed Monitoring and Assessment and Iowa State University Extension the farmers were able to conduct an assessment of their stream and watershed. The assessment showed multiple potential sources of bacteria, dependent on whether water samples were collected following rain events or during dry conditions. This project will allow watershed farmers to implement solutions to reduce bacteria delivery during both wet and dry weather. Funding will be targeted to feedlot runoff control improvements, cover crops and vegetative filters, manure management strategies and livestock stream access. The council intends to continue intensive water monitoring to determine whether the strategies are successful. Research shows the bacteria reduction in water bodies can be seen relatively quickly, within 1-2 years, compared to other types of impairments.