9 resultados para Warrantti, Warrants
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Research was undertaken, sponsored by the Iowa Department of Transportation, to identify specific locations where rumble strips could be expected to improve highway safety. The objective of the research was to recommend warrants for their use on rural highways. An inventory of rumble strip installations on the rural highway systems in the state was conducted in 1981. A total of 685 installations was reported on secondary roads and 147 on primary highways. Over 97 percent of these were in advance of stop signs at. intersections. Most of the other installations were in advance of railroad grade crossings. The accident experience with and without rumble strips was compared in two ways. A before-and-after comparison was made for the same location if accident records were available for at least one full year both preceding and following the installation of rumble strips. Accident records for this purpose were available from a statewide computerized record system covering the period from 1977 through 1980. The accident experience at locations having rumble strips installed before 1978 was compared with a sample of comparable locations not having rumble strips.
Resumo:
Gross-to-Net is a payroll calculator modeled after the actual payroll calculation program used for state employees’ pay warrants. This calculator can be used to project changes in deduction amounts and net pay when there are changes in pay amounts, hours worked, mandatory and voluntary deductions, including all pre-tax deductions such as retirement, insurances, deferred compensation or flexible spending plans. Federal and state tax withholding, retirement rates, OASDI and Medicare (FICA), and insurance deductions are calculated using current rates on HRIS Production. The Gross-to-Net Calculator is accessed through the employee’s timesheet. For instructions on accessing the timesheet, please refer to the HRIS Time Reporting System Manual. When viewing the timesheet, enter “GN” in the header action field to go to the calculator.
Resumo:
Gross-to-Net is a payroll calculator modeled after the actual payroll calculation program used for state employees’ pay warrants. This calculator can be used to project changes in deduction amounts and net pay when there are changes in pay amounts, hours worked, mandatory and voluntary deductions, including all pre-tax deductions such as retirement, insurances, deferred compensation or flexible spending plans. Federal and state tax withholding, retirement rates, OASDI and Medicare (FICA), and insurance deductions are calculated using current rates on HRIS Production.
Resumo:
The Transportation Equity Act of the 21st Century (TEA-21) (23 CFR) mandated environmental streamlining in order to improve transportation project delivery without compromising environmental protection. In accordance with TEA-21, the environmental review process for this project has been documented as a Streamlined Environmental Assessment (EA). This document addresses only those resources or features that apply to the project. This allowed study and discussion of resources present in the study area, rather than expend effort on resources that were either not present or not impacted. Although not all resources are discussed in the EA, they were considered during the planning process and are documented in the Streamlined Resource Summary, shown in Appendix A. The following table shows the resources considered during the environmental review for this project. The first column with a check means the resource is present in the project area. The second column with a check means the impact to the resource warrants more discussion in this document. The other listed resources have been reviewed and are included in the Streamlined Resource Summary.
Resumo:
Gross-to-Net is a payroll calculator modeled after the actual payroll calculation program used for state employees’ pay warrants. This calculator can be used to project changes in deduction amounts and net pay when there are changes in pay amounts, hours worked, mandatory and voluntary deductions, including all pre-tax deductions such as retirement, insurances, deferred compensation or flexible spending plans. Federal and state tax withholding, retirement rates, OASDI and Medicare (FICA), and insurance deductions are calculated using current rates on HRIS Production.
Resumo:
The Transportation Equity Act of the 21st Century (TEA-21) (23 CFR) mandated environmental streamlining in order to improve transportation project delivery without compromising environmental protection. In accordance with TEA-21, the environmental review process for this project has been documented as a Streamlined Environmental Assessment (EA). This document addresses only those resources or features that apply to the project. This allowed study and discussion of resources present in the study area, rather than expend effort on resources that were either not present or not impacted. Although not all resources are discussed in the EA, they were considered during the planning process and are documented in the Streamlined Resource Summary, shown in Appendix A. The following table shows the resources considered during the environmental review for this project. The first column with a check means the resource is present in the project area. The second column with a check means the impact to the resource warrants more discussion in this document. The other listed resources have been reviewed and are included in the Streamlined Resource Summary.
Resumo:
The Transportation Equity Act of the 21st Century (TEA-21) (23 CFR) mandated environmental streamlining in order to improve transportation project delivery without compromising environmental protection. In accordance with TEA-21, the environmental review process for this project has been documented as a Streamlined Environmental Assessment (EA). This document addresses only those resources or features that apply to the project. This allowed study and discussion of resources present in the study area, rather than expend effort on resources that were either not present or not impacted. Although not all resources are discussed in the EA, they were considered during the planning process and are documented in the Streamlined Resource Summary, shown in Appendix A. The following table shows the resources considered during the environmental review for this project. The first column with a check means the resource is present in the project area. The second column with a check means the impact to the resource warrants more discussion in this document. The other listed resources have been reviewed and are included in the Streamlined Resource Summary.
Resumo:
There are approximately 800 installations of destination lighting at secondary road intersections in Iowa. Approximately 90% of these have only a single luminaire. The other installations have two luminaires. No warrants currently exist for justifying the use of this type of lighting. Previous research has examined the safety benefits from full lighting of rural intersections that generally serve substantially higher traffic volumes than secondary road intersections in Iowa. However, the safety benefit of destination lighting at intersections carrying relatively low volumes has not been the subject of previous research. The research reported here, sponsored by the Iowa Department of Transportation, was undertaken to identify locations where destination lighting could be expected to improve highway safety. If destination lighting were shown to reduce accident frequency, warrants for its use on secondary roads could be developed. An inventory of secondary road lighting installations in Iowa was assembled. From this inventory, two samples were constituted that would permit two separate comparisons of the accident experience with and without destination lighting. Before and after comparisons were made for the same locations if accident records were available for at least one full year both preceding and following the installation of destination lighting. Accident records for this purpose were available from a statewide computerized record system covering the period from 1977 through 1982. The accident experience at locations having destination lighting installed before 1978 was compared with a sample of comparable locations not having destination lighting. The sample of secondary road intersections used for the before and after comparison included 91 locations. The sample of continuously lighted locations included 102 intersections. Accident experience at these locations was compared with the experience at 102 intersections that were not lighted. The intersections included in these samples averaged only 0.31 accidents per year. The accident rate at secondary road intersections that had destination lighting did not differ significantly from the accident rate at intersections that were not lighted. This conclusion was derived from both comparisons, the before and after experience and the comparison of experience at intersections that were continuously lighted with that at unlighted locations. Furthermore, no significant differences were noted between lighted and unlighted locations in the proportion of accidents that occurred at night. The distribution of accidents by type also did not differ between unlighted intersections and those having destination lighting. It was not possible to formulate warrants for destination lighting since analyses directed toward identifying specific characteristics of an intersection that could be correlated with highway safety did not yield any useful relationships. However, it was noted that the average damages for night accidents that occurred at lighted intersections were lower than for accidents at unlighted intersections. Even in the absence of a more definitive demonstration of beneficial effects, destination lighting is perceived by officials in most of the counties having such installations as yielding desirable effects and is recognized as helpful to motorists in performing the guidance function in driving. Given this benefit and a relatively low cost (an average of $74 per year for one luminaire), and given that the subjective criteria that have been used in the past to justify the installation of destination lighting have led to a high degree of public acceptance and satisfaction, it is recommended that the same subjective criteria continue to be used in lieu of definitive warrants.
Resumo:
The Center for Transportation Research and Education performed a traffic signal inventory study for the Iowa Department of Transportation. The purpose of this study was to determine the level of compliance with the Manual on Uniform Traffic Control Devices (MUTCD) and other industry standards of traffic signals on the state highway system. Signals were randomly selected throughout the State of Iowa. Only signals in cities with a population less than 5,000 were considered. Several intersections need to be addressed immediately to correct clearance timing settings. Red clearance intervals were frequently too short. A handful of intersections had inadequate pedestrian clearance times. Six intersections had at least one yellow clearance interval that did not meet Institute of Transportation Engineers standards. Some of the intersections likely would not meet traffic signal warrants and should be investigated for possible removal. The most common problem found with traffic signals was a lack of maintenance. Many of the signals had at least one of the following problems: burned out lights (signals and/or pedestrian heads), pedestrian lenses in need of replacement, dirty cabinet/missing or poor filter, missing visors, or inoperative pedestrian push buttons. Timing sheets were frequently missing or out of date. Another frequent noncompliance issue was the use of backplates. The MUTCD states that backplates should be used on signals viewed against a bright sky. The majority of signals inventoried did not have backplates on the mast-arm mounted signals. The timing at some intersections could likely be improved by reducing the cycle length. Where there were multiple signals in close proximity rarely was there any attempt at signal coordination. Finally, a number of intersections had equipment that by today’s standards would be considered obsolete.