25 resultados para Transportation system management.
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This report is the product of a first-year research project in the University Transportation Centers Program. This project was carried out by an interdisciplinary research team at The University of Iowa's Public Policy Center. The project developed a computerized system to support decisions on locating facilities that serve rural areas while minimizing transportation costs. The system integrates transportation databases with algorithms that specify efficient locations and allocate demand efficiently to service regions; the results of these algorithms are used interactively by decision makers. The authors developed documentation for the system so that others could apply it to estimate the transportation and route requirements of alternative locations and identify locations that meet certain criteria with the least cost. The system was developed and tested on two transportation-related problems in Iowa, and this report uses these applications to illustrate how the system can be used.
Resumo:
This document describes planned investments in Iowa’s multimodal transportation system including aviation, transit, railroads, trails, and highways. This five-year program documents $3.5 billion of highway and bridge construction projects on the primary road system using federal and state funding. Of that funding, a little over $500 million is available due to the passage of Senate File 257 in February 2015. As required by Senate File 257, this program includes a list of the critical highway and bridge projects funded with the additional revenue. Since last year’s program, a new federal surface transportation authorization bill was passed and signed into law. This authorization bill is titled Fixing America’s Surface Transportation (FAST) Act. The FAST Act, for the first time in many years, provides federal funding certainty over most of the time covered by this Program. In addition, it provided additional federal funding for highway and bridge projects.
Resumo:
The objective of this research was to develop a methodology for transforming and dynamically segmenting data. Dynamic segmentation enables transportation system attributes and associated data to be stored in separate tables and merged when a specific query requires a particular set of data to be considered. A major benefit of dynamic segmentation is that individual tables can be more easily updated when attributes, performance characteristics, or usage patterns change over time. Applications of a progressive geographic database referencing system in transportation planning are vast. Summaries of system condition and performance can be made, and analyses of specific portions of a road system are facilitated.
Resumo:
In order to determine the adequacy with which safety problems on low-volume rural roadways were addressed by the four states of Federal Region VII (Iowa, Kansas, Missouri, and Nebraska), a review was made of the states' safety policies. After reviewing literature dealing with the identification of hazardous locations, evaluation methodologies, and system-wide safety improvements, a survey of the states' safety policies was conducted. An official from each state was questioned about the various aspects and procedures dealing with safety improvements. After analyzing and comparing the remarkably diverse policies, recommendations were made in the form of a model safety program. This program included special modifications that would help remediate hazards on low-volume rural roadways. Especially encouraged is a system-wide approach to improvement which would cover all parts of the highway system, not just urban and high-volume roadways.
Resumo:
The spirit behind the creation of the task force is one of good government. It rests upon the basic premise that taxpayers demand the best service possible for their tax dollars. Combine this demand for efficiency with Iowa's aging roadway system, and a projected increase in the state's vehicle miles traveled, the need to examine cost savings becomes apparent. Beyond the rational for good and efficient government, however, is a major concern for potential future reductions in Federal highway funds. Iowa is likely entering a period of needing an expanded transportation system with at best a static capacity for maintenance and construction.
Resumo:
This report was prepared for the Iowa Department of Transportation to document the results of a comprehensive study of the US 61 bypass corridor in Muscatine, Iowa. The focus of the study was to address community concerns regarding traffic safety and traffic operations. In completing the study, accident and traffic volume data was collected and analyzed. Input from the public and elected officials of the Muscatine community was also obtained. The goals of the project were to: Accurately identify the nature of the types of problems and the locations where the problems were occurring; Formulate a range of possible remedial measures; Analyze and test those proposed measures; Inform the community of the nature of the traffic problems and of the proposed remedies; Seek feedback from the community on those proposed remedies; Develop a comprehensive list of recommended improvements; Develop cost estimates and assign priorities to those possible improvements. An additional goal of this project was to identify possible Intelligent Transportation System (ITS) measures that could be used to address the safety and operations problems that have developed along this corridor. The proposed ITS measures were also to be analyzed to determine their likely benefits and their likely success if used at other locations elsewhere in Iowa.
Resumo:
The Highway Safety Manual (HSM) is the compilation of national safety research that provides quantitative methods for analyzing highway safety. The HSM presents crash modification functions related to freeway work zone characteristics such as work zone duration and length. These crash modification functions were based on freeway work zones with high traffic volumes in California. When the HSM-referenced model was calibrated for Missouri, the value was 3.78, which is not ideal since it is significantly larger than 1. Therefore, new models were developed in this study using Missouri data to capture geographical, driver behavior, and other factors in the Midwest. Also, new models for expressway and rural two-lane work zones that barely were studied in the literature were developed. A large sample of 20,837 freeway, 8,993 expressway, and 64,476 rural two-lane work zones in Missouri was analyzed to derive 15 work zone crash prediction models. The most appropriate samples of 1,546 freeway, 1,189 expressway, and 6,095 rural two-lane work zones longer than 0.1 mile and with a duration of greater than 10 days were used to make eight, four, and three models, respectively. A challenging question for practitioners is always how to use crash prediction models to make the best estimation of work zone crash count. To solve this problem, a user-friendly software tool was developed in a spreadsheet format to predict work zone crashes based on work zone characteristics. This software selects the best model, estimates the work zone crashes by severity, and converts them to monetary values using standard crash estimates. This study also included a survey of departments of transportation (DOTs), Federal Highway Administration (FHWA) representatives, and contractors to assess the current state of the practice regarding work zone safety. The survey results indicate that many agencies look at work zone safety informally using engineering judgment. Respondents indicated that they would like a tool that could help them to balance work zone safety across projects by looking at crashes and user costs.
Resumo:
In urban areas, interchange spacing and the adequacy of design for weaving, merge, and diverge areas can significantly influence available capacity. Traffic microsimulation tools allow detailed analyses of these critical areas in complex locations that often yield results that differ from the generalized approach of the Highway Capacity Manual. In order to obtain valid results, various inputs should be calibrated to local conditions. This project investigated basic calibration factors for the simulation of traffic conditions within an urban freeway merge/diverge environment. By collecting and analyzing urban freeway traffic data from multiple sources, specific Iowa-based calibration factors for use in VISSIM were developed. In particular, a repeatable methodology for collecting standstill distance and headway/time gap data on urban freeways was applied to locations throughout the state of Iowa. This collection process relies on the manual processing of video for standstill distances and individual vehicle data from radar detectors to measure the headways/time gaps. By comparing the data collected from different locations, it was found that standstill distances vary by location and lead-follow vehicle types. Headways and time gaps were found to be consistent within the same driver population and across different driver populations when the conditions were similar. Both standstill distance and headway/time gap were found to follow fairly dispersed and skewed distributions. Therefore, it is recommended that microsimulation models be modified to include the option for standstill distance and headway/time gap to follow distributions as well as be set separately for different vehicle classes. In addition, for the driving behavior parameters that cannot be easily collected, a sensitivity analysis was conducted to examine the impact of these parameters on the capacity of the facility. The sensitivity analysis results can be used as a reference to manually adjust parameters to match the simulation results to the observed traffic conditions. A well-calibrated microsimulation model can enable a higher level of fidelity in modeling traffic behavior and serve to improve decision making in balancing need with investment.
Resumo:
In February the U.S. 20 Corridor Development Study's Steering Committee met to review Report A. At that meeting the Committee selected seven alternatives to be evaluated from a cost and traffic perspective. This report, Report B, presents the cost and traffic evaluation of these seven alternatives. This Report B and its cost and traffic estimates will be reviewed at the next Steering Committee meeting. At that time it is possible that, based on the traffic and cost estimates, one or more of the alternatives will be eliminated from further consideration. After that meeting the Consultant will initiate the more in-depth analyses, including the economic feasibility
Resumo:
This study examines the feasibility of making a major financial investment in the improvement of U.S. 20 between Sioux City and Fort Dodge, Iowa. This 119-mile (191-km) highway segment of U.S. 20 currently includes 97 miles (156 km) of 2-lane highway and 22 miles (35 km) of 4-lane highway (on the west end near Sioux City and a short section near Holstein). This 119-mile (191-km) segment is predominantly rural in nature, and serves a region of Iowa that has not been economically prospering. Local business leaders and residents have long desired major improvements to this highway segment, not only because of the safety and travel efficiency implications, but also because of the belief that the highway, as mainly a two-lane facility, is retarding the corridor area's economic growth and well being. The study was divided into five sequential tasks: (A) Evaluation of Existing U.S. 20; (B) Improvement Alternatives, Costs and Traffic; (C) Screening of Alternative Candidate Improvements; (D) Economic Feasibility Analysis; and (E) Interpretation and Comparisons.
Resumo:
Crossroads 2000 was the second biennial transportation research conference cosponsored by the Center for Transportation Research and Education (CTRE) at Iowa State University and the Iowa Department of Transportation. This proceedings is the set of papers presented at the conference. Twenty-five categories of papers were presented in five concurrent sessions. Reflecting the increasingly critical role of intelligent transportation systems (ITS) in maintaining and enhancing transportation safety and efficiency, one category in each concurrent session addressed an area of ITS. However, papers were included from all areas of interest, ranging from transportation infrastructure design to transportation policy. The proceedings contains 58 papers.
Resumo:
This report documents the results of a three million dollar traffic signal improvement demonstration program, known as the Iowa Motor Vehicle Fuel Reduction Program (the program). The program was funded with the use of oil overcharge funds and administered by the Iowa Departments of Natural Resources and Transportation. The objective of the program was to provide restitution to overcharged motorists by improving the efficiency of traffic signals. More efficient traffic signals reduce fuel consumption, delay, travel time, and automobile pollution while improving traffic safety. The program demonstrated the effectiveness of improving traffic signals and resulted in a 14.20-to-1 benefit-to-cost ratio.
Resumo:
The investigations for this report were initiated in October, 1967, to perform the following: l. Review the current Iowa State Highway Commission roadway geometric design standards and criteria for conformance with national policies and recent research findings with special attention to high way safety. 2. Review the current Iowa State Highway Commission roadway lighting design standards and criteria for conformance with national policies and recent research findings with special attention to high way safety
Resumo:
The study analyzes the need for a four-lane highway between St. Louis and St. Paul, and finds it to be needed; it analyzes the highway's feasibility, and finds it to be feasible; it analyzes alternative design standards and suggests that it be built to expressway standards; and, the study evaluates alternative routes and presents four "finalist" routes for your consideration.
Resumo:
The study analyzes the need for a four-lane highway between St. Louis and St. Paul, and finds it to be needed; it analyzes the highway's feasibility, and finds it to be feasible; it analyzes alternative design standards and suggests that it be built to expressway standards; and, the study evaluates alternative routes and presents four "finalist" routes for your consideration.