15 resultados para Power system operations

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Winter maintenance, particularly snow removal and the stress of snow removal materials on public structures, is an enormous budgetary burden on municipalities and nongovernmental maintenance organizations in cold climates. Lately, geospatial technologies such as remote sensing, geographic information systems (GIS), and decision support tools are roviding a valuable tool for planning snow removal operations. A few researchers recently used geospatial technologies to develop winter maintenance tools. However, most of these winter maintenance tools, while having the potential to address some of these information needs, are not typically placed in the hands of planners and other interested stakeholders. Most tools are not constructed with a nontechnical user in mind and lack an easyto-use, easily understood interface. A major goal of this project was to implement a web-based Winter Maintenance Decision Support System (WMDSS) that enhances the capacity of stakeholders (city/county planners, resource managers, transportation personnel, citizens, and policy makers) to evaluate different procedures for managing snow removal assets optimally. This was accomplished by integrating geospatial analytical techniques (GIS and remote sensing), the existing snow removal asset management system, and webbased spatial decision support systems. The web-based system was implemented using the ESRI ArcIMS ActiveX Connector and related web technologies, such as Active Server Pages, JavaScript, HTML, and XML. The expert knowledge on snow removal procedures is gathered and integrated into the system in the form of encoded business rules using Visual Rule Studio. The system developed not only manages the resources but also provides expert advice to assist complex decision making, such as routing, optimal resource allocation, and monitoring live weather information. This system was developed in collaboration with Black Hawk County, IA, the city of Columbia, MO, and the Iowa Department of transportation. This product was also demonstrated for these agencies to improve the usability and applicability of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A t the request of the Iowa State Highway Commission, the Engineering Research Institute observed the traffic operations at the Interstate 29 (1-29) and Interstate 80 (1-80) interchange in the southwest part of Council Bluffs. The general location of the site is shown in Figure 1. Before limiting the analysis to the diverging area the project staff drove the entire Council Bluffs freeway system and consulted with M r . Philip Hassenstab (Iowa State Highway Commission, District 4, Resident Maintenance Engineer at Council Bluffs). The final study scope was delineated as encompassing only the operational characteristics of the diverge area where 1-29 South and 1-80 East divide and the ramp to merge area where 1-80 West joins 1-29 North (both areas being contained within the aforementioned interchange). Supplementing the traffic operations scope, was an effort to delineate and document the applicability of video-tape techniques to traffic engineering studies and analyses. Documentation was primarily in the form of a demonstration video-tape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transportation system is in demand 24/7 and 365 days a year irrespective of neither the weather nor the conditions. Iowa’s transportation system is an integral and essential part of society serving commerce and daily functions of all Iowans across the state. A high quality transportation system serves as the artery for economic activity and, the condition of the infrastructure is a key element for our future growth opportunities. A key component of Iowa’s transportation system is the public roadway system owned and maintained by the state, cities and counties. In order to regularly re-evaluate the conditions of Iowa’s public roadway infrastructure and assess the ability of existing revenues to meet the needs of the system, the Iowa Department of Transportation’s 2006 Road Use Tax Fund (RUTF) report to the legislature included a recommendation that a study be conducted every five years. That recommendation was included in legislation adopted in 2007 and signed into law. The law specifically requires the following (2011 Iowa Code Section 307.31): •“The department shall periodically review the current revenue levels of the road use tax fund and the sufficiency of those revenues for the projected construction and maintenance needs of city, county, and state governments in the future. The department shall submit a written report to the general assembly regarding its findings by December 31 every five years, beginning in 2011. The report may include recommendations concerning funding levels needed to support the future mobility and accessibility for users of Iowa's public road system.” •“The department shall evaluate alternative funding sources for road maintenance and construction and report to the general assembly at least every five years on the advantages and disadvantages and the viability of alternative funding mechanisms.” Consistent with this requirement, the Iowa Department of Transportation (DOT) has prepared this study. Recognizing the importance of actively engaging with the public and transportation stakeholders in any discussion of public roadway conditions and needs, Governor Terry E. Branstad announced on March 8, 2011, the creation of, and appointments to, the Governor’s Transportation 2020 Citizen Advisory Commission (CAC). The CAC was tasked with assisting the Iowa DOT as they assess the condition of Iowa’s roadway system and evaluate current and future funding available to best address system needs. In particular the CAC was directed to gather input from the public and stakeholders regarding the condition of Iowa’s public roadway system, the impact of that system, whether additional funding is needed to maintain/improve the system, and, if so, what funding mechanisms ought to be considered. With this input, the CAC prepared a report and recommendations that were presented to Governor Branstad and the Iowa DOT in November 2011 for use in the development of this study. The CAC’s report is available at www.iowadot.gov/transportation2020/pdfs/CAC%20REPORT%20FINAL%20110211.pdf. The CAC’s report was developed utilizing analysis and information from the Iowa DOT. Therefore, the report forms the basis for this study and the two documents are very similar. Iowa is fortunate to have an extensive public roadway system that provides access to all areas of the state and facilitates the efficient movement of goods and people. However, it is also a tremendous challenge for the state, cities and counties to maintain and improve this system given flattening revenue, lost buying power, changing demands on the system, severe weather, and an aging system. This challenge didn’t appear overnight and for the last decade many studies have been completed to look into the situation and the legislature has taken significant action to begin addressing the situation. In addition, the Iowa DOT and Iowa’s cities and counties have worked jointly and independently to increase efficiency and streamline operations. All of these actions have been successful and resulted in significant changes; however, it is apparent much more needs to be done. A well-maintained, high-quality transportation system reduces transportation costs and provides consistent and reliable service. These are all factors that are critical in the evaluation companies undertake when deciding where to expand or locate new developments. The CAC and Iowa DOT heard from many Iowans that additional investment in Iowa’s roadway system is vital to support existing jobs and continued job creation in the state of Iowa. Beginning June 2011, the CAC met regularly to review material and discuss potential recommendations to address Iowa’s roadway funding challenges. This effort included extensive public outreach with meetings held in seven locations across Iowa and through a Transportation 2020 website hosted by the Iowa DOT (www.iowadot.gov/transportation2020). Over 500 people attended the public meetings held through the months of August and September, with 198 providing verbal or written comment at the meetings or through the website. Comments were received from a wide array of individuals. The public comments demonstrated overwhelming support for increased funding for Iowa’s roads. Through the public input process, several guiding principles were established to guide the development of recommendations. Those guiding principles are: • Additional revenues are restricted for road and bridge improvements only, like 95 percent of the current state road revenue is currently. This includes the fuel tax and registration fees. • State and local governments continue to streamline and become more efficient, both individually and by looking for ways to do things collectively. • User fee concept is preserved, where those who use the roads pay for them, including non¬residents. • Revenue-generating methods equitable across users. • Increase revenue generating mechanisms that are viable now but begin to implement and set the stage for longer-term solutions that bring equity and stability to road funding. • Continue Iowa’s long standing tradition of state roadway financing coming from pay-as-you-go financing. Iowa must not fall into the situation that other states are currently facing where the majority of their new program dollars are utilized to pay the debt service of past bonding. Based on the analysis of Iowa’s public roadway needs and revenue and the extensive work of the Governor’s Transportation 2020 Citizen Advisory Commission, the Iowa DOT has identified specific recommendations. The recommendations follow very closely the recommendations of the CAC (CAC recommendations from their report are repeated in Appendix B). Following is a summary of the recommendations which are fully documented beginning on page 21. 1. Through a combination of efficiency savings and increased revenue, a minimum of $215 million of revenue per year should be generated to meet Iowa’s critical roadway needs. 2. The Code of Iowa should be changed to require the study of the sufficiency of the state’s road funds to meet the road system’s needs every two years instead of every five years to coincide with the biennial legislative budget appropriation schedule. 3.Modify the current registration fee for electric vehicles to be based on weight and value using the same formula that applies to most passenger vehicles. 4.Consistent with existing Code of Iowa requirements, new funding should go to the TIME-21 Fund up to the cap ($225 million) and remaining new funding should be distributed consistent with the Road Use Tax Fund distribution formula. 5.The CAC recommended the Iowa DOT at least annually convene meetings with cities and counties to review the operation, maintenance and improvement of Iowa’s public roadway system to identify ways to jointly increase efficiency. In direct response to this recommendation, Governor Branstad directed the Iowa DOT to begin this effort immediately with a target of identifying $50 million of efficiency savings that can be captured from the over $1 billion of state revenue already provided to the Iowa DOT and Iowa’s cities and counties to administer, maintain and improve Iowa’s public roadway system. This would build upon past joint and individual actions that have reduced administrative costs and resulted in increased funding for improvement of Iowa’s public roadway system. Efficiency actions should be quantified, measured and reported to the public on a regular basis. 6.By June 30, 2012, Iowa DOT should complete a study of vehicles and equipment that use Iowa’s public roadway system but pay no user fees or substantially lower user fees than other vehicles and equipment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Operations lead evaluation to determine future opportunities for best practices in Treatment, Operations, Classification, and Programs; ultimately leading evaluations toward the appropriate utilization and application of new and existing infrastructure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amana Farms is using an anaerobic digestion, which is a two-stage digester that converts manure and other organic wastes into three valuable by-products: 1) Biogas – to fuel an engine/generator set to create electricity; 2) Biosolids - used as a livestock bedding material or as a soil amendment; 3) Liquid stream - will be applied as a low-odor fertilizer to growing crops. (see Business Plan appendix H) The methane biogas will be collected from the two stages of the anaerobic digestion vessel and used for fuel in the combined heat and power engine/generator sets. The engine/generator sets are natural gasfueled reciprocating engines modified to burn biogas. The electricity produced by the engine/generator sets will be used to offset on-farm power consumption and the excess power will be sold directly to Amana Society Service Company as a source of green power. The waste heat, in the form of hot water, will be collected from both the engine jacket liquid cooling system and from the engine exhaust (air) system. Approximately 30 to 60% of this waste heat will be used to heat the digester. The remaining waste heat will be used to heat other farm buildings and may provide heat for future use for drying corn or biosolids. The digester effluent will be pumped from the effluent pit at the end of the anaerobic digestion vessel to a manure solids separator. The mechanical manure separator will separate the effluent digested waste stream into solid and liquid fractions. The solids will be dewatered to approximately a 35% solid material. Some of the separated solids will be used by the farm for a livestock bedding replacement. The remaining separated solids may be sold to other farms for livestock bedding purposes or sold to after-markets, such as nurseries and composters for soil amendment material. The liquid from the manure separator, now with the majority of the large solids removed, will be pumped into the farm’s storage lagoon. A significant advantage of the effluent from the anaerobic digestion treatment process is that the viscosity of the effluent is such that the liquid effluent can now be pumped through an irrigation nozzle for field spreading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the more severe winter hazards is ice or compacted snow on roadways. While three methods are typically used to combat ice (salting, sanding and scraping), relatively little effort has been applied to improve methods of scraping ice from roads. In this project, a new test facility has been developed, comprising a truck with an underbody blade, which has been instrumented such that the forces to scrape ice from a pavement can be measured. A test site has been used, which is not accessible to the public, and ice covers have been sprayed onto the pavement and subsequently scraped from it, while the scraping loads have been recorded. Three different cutting edges have been tested for their ice scraping efficiency. Two of the blades are standard (one with a carbide insert, the other without) while the third blade was designed under the SHRP H-204A project. Results from the tests allowed two parameters to be identified. The first is the scraping efficiency which is the ratio of vertical to horizontal force. The lower this ratio, the more efficiently ice is being removed. The second parameter is the scraping effectiveness, which is related (in some as yet unspecified manner) to the horizontal load. The higher the horizontal load, the more ice is being scraped. The ideal case is thus to have as high a horizontal load as possible, combined with the lowest possible vertical load. Results indicate that the SHRP blade removed ice more effectively than the other two blades under equivalent conditions, and furthermore, did so with greater efficiency and thus more control. Furthermore, blade angles close to 0 deg provide for the most efficient scraping for all three blades. The study has shown that field testing of plow blades is possible in controlled situations, and that blades can be evaluated using this system. The system is available for further tests as are deemed appropriate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, many drivers experience some difficulty in viewing the road ahead of them during times of reduced visibility, such as rain, snow, fog, or the darkness of night- Recent studies done by the National Safety Council provide a detailed contrast between fatal accidents occurring during the day and night. Revealed was that the motor vehicle night death rate (4.41 deaths per 100 million miles driven) was sharply higher than the corresponding death rate during daylight hours (1.21). By providing a delineating system powered by the natural resource of solar power, a constant source of visibility may be maintained throughout the evening. Along with providing enough light to trace the outline of the road, other major goals defined in producing this delineator system are as follows: 1. A strong and durable design that would protect the internal components and survive extreme weather conditions. 2. A low maintenance system where components need few repairs or replacements. 3. A design which makes all components accessible in the event that maintenance is needed, but also prevents vandalism. 4. A design that provides greater visibility to drivers and will not harm a vehicle or its passengers in the event of a collision. This solar powered highway delineator consists of an adjustable solar array, a light fixture, and a standard delineator pole. The solar array houses and protects the solar panels, and can be easily adjusted to obtain a maximum amount of sunlight. The light fixture primarily houses the battery, the circuit and the light assembly. Both components allow for easy accessibility and reduce vandalism using internal connections for bolts and wires. The delineator mounting pole is designed to extensively deform in the event of a collision, therefore reducing any harm caused to the vehicle and/or the passengers. The cost of a single prototype to be produced is approximately $70.00 excluding labor costs. However, these material and labor costs will be greatly reduced if a large number of delineators are produced. It is recommended that the Iowa Department of Transportation take full advantage of the research and development put into this delineator design. The principles used in creating this delineator can be used to provide an outline for drivers to follow, or on a larger scale, provide actual roadway lighting in areas where it was never before possible or economically feasible. In either event, the number of fatal accidents will be decreased due to the improved driver visibility in the evening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report describes a project begun in January 1989 and completed December 1990, with the primary objective of obtaining sufficiently accurate horizontal and vertical control by using Global Positioning System (GPS) for highway applications. The ISU research group studied the operations of the Ashtech GPS receiver in static, pseudo-static, kinematic, and pseudo-kinematic modes. By using the Electronic Distance Measuring Instrument (EDMI) Calibration Baseline at ISU, the GPS receiver was tested for distance measurement accuracy. It was found that GPS measurements differed from the baseline distance by about 5.3 mm. Four projects were undertaken to further evaluate and improve the horizontal as well as the vertical accuracies of the GPS receiver -- (1) The Campus Project: with all points concentrated within a one-mile radius; (2) The Des Moines Project: a typical DOT project with all the points within a five-mile radius; (3) The Iowa Project: with all points within a 100-mile radius in the state of Iowa; and (4) The Mustang Project: an extension of the Iowa project, including a typical DOT project of about 10 miles within the inner 30 mile radius of the Iowa project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ISU’s proposed research will (1) develop methods for designing clean and efficient burners for low‐Btu producer gas and medium‐Btu syngas, (2) develop catalysts and flow reactors to produce ethanol from medium‐Btu synthesis gas, and (3) upgrade the BECON gasifier system to enable medium‐Btu syngas production and greatly enhanced capabilities for detailed gas analysis needed by both (1) and (2). This project addresses core development needs to enable grain ethanol industry reduce its natural gas demand and ultimately transition to cellulosic ethanol production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Remote monitoring through the use of cameras is widely utilized for traffic operation, but has not been utilized widely for roadway maintenance operations. The Utah Department of Transportation (UDOT) has implemented a new remote monitoring system, referred to as a Cloud-enabled Remote Video Streaming (CRVS) camera system for snow removal-related maintenance operations in the winter. The purpose of this study was to evaluate the effectiveness of the use of the CRVS camera system in snow removal-related maintenance operations. This study was conducted in two parts: opinion surveys of maintenance station supervisors and an analysis on snow removal-related maintenance costs. The responses to the opinion surveys mostly displayed positive reviews of the use of the CRVS cameras. On a scale of 1 (least effective) to 5 (most effective), the average overall effectiveness given by the station supervisors was 4.3. An expedition trip for this study was defined as a trip that was made to just check the roadways if snow-removal was necessary. The average of the responses received from surveys was calculated to be a 33 percent reduction in expedition trips. For the second part of this study, an analysis was performed on the snow removal-related maintenance cost data provided by UDOT to see if the installation of a CRVS camera had an effect in reducing expedition trips. This expedition cost comparison was performed for 10 sets of maintenance stations within Utah. It was difficult to make any definitive inferences from the comparison of expedition costs over the years for which precipitation and expedition cost data were available; hence a statistical analysis was performed using the Mixed Model ANOVA. This analysis resulted in an average of 14 percent higher ratio of expedition costs at maintenance stations with a CRVS camera before the installation of the camera compared to the ratio of expedition costs after the installation of the camera. This difference was not proven to be statistically significant at the 95 percent confident level, but indicated that the installation of CRVS cameras was on the average helpful in reducing expedition costs and may be considered practically significant. It is recommended that more detailed and consistent maintenance cost records be prepared for accurate analysis of cost records for this type of study in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project develops a smartphone-based prototype system that supplements the 511 system to improve its dynamic traffic routing service to state highway users under non-recurrent congestion. This system will save considerable time to provide crucial traffic information and en-route assistance to travelers for them to avoid being trapped in traffic congestion due to accidents, work zones, hazards, or special events. It also creates a feedback loop between travelers and responsible agencies that enable the state to effectively collect, fuse, and analyze crowd-sourced data for next-gen transportation planning and management. This project can result in substantial economic savings (e.g. less traffic congestion, reduced fuel wastage and emissions) and safety benefits for the freight industry and society due to better dissemination of real-time traffic information by highway users. Such benefits will increase significantly in future with the expected increase in freight traffic on the network. The proposed system also has the flexibility to be integrated with various transportation management modules to assist state agencies to improve transportation services and daily operations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following is the Operations Manual for the Pennsylvania Ave Bridge over I-235 located in Des Moines, Iowa, which was installed from July 1992 to October 1992. The project uses ELGARD™ 210 Anode Mesh and is divided into 3 zones. Periodic data collection and/or inspection of the cathodic protection system is required to insure proper operation and a long life. This Operation Manual contains a schedule, operation procedures, operation log forms, a rectifier panel drawing, and pertinent reference matenal. Operation procedures and operating records are contained in the body of the manual, while blank operation forms, as built drawings, and pertinent reference material are contained in the appendices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this research project was to develop a method to measure the performance of a winter maintenance program with respect to the task of providing safety and mobility to the travelling public. Developing these measures required a number of steps, each of which was accomplished. First, the impact of winter weather on safety (crash rates) and mobility (average vehicle speeds were measured by a combination of literature reviews and analysis of Iowa Department of Transportation traffic and Road Weather Information System data. Second, because not all winter storms are the same in their effects on safety and mobility, a method had to be developed to determine how much the various factors that describe a winter storm actually change safety and mobility. As part of this effort a storm severity index was developed, which ranks each winter storm on a scale between 0 (a very benign storm) and 1 (the worst imaginable storm). Additionally a number of methods of modeling the relationships between weather, winter maintenance actions and road surface conditions were developed and tested. The end result of this study was a performance measure based on average vehicle speed. For a given class of road, a maximum expected average speed reduction has been identified. For a given storm, this maximum expected average speed reduction is modified by the storm severity index to give a target average speed reduction. Thus, if for a given road the maximum expected average speed reduction is 20 mph, and the storm severity for a particular storm is 0.6, then the target average speed reduction for that road in that storm is 0.6 x 20 mph or 12 mph. If the average speed on that road during and after the storm is only 12 mph or less than the average speed on that road in good weather conditions, then the winter maintenance performance goal has been met.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this work was to move structural health monitoring (SHM) one step closer to being ready for mainstream use by the Iowa Department of Transportation (DOT) Office of Bridges and Structures. To meet this goal, the objective of this project was to implement a pilot multi-sensor continuous monitoring system on the Iowa Falls Arch Bridge such that autonomous data analysis, storage, and retrieval can be demonstrated. The challenge with this work was to develop the open channels for communication, coordination, and cooperation of various Iowa DOT offices that could make use of the data. In a way, the end product was to be something akin to a control system that would allow for real-time evaluation of the operational condition of a monitored bridge. Development and finalization of general hardware and software components for a bridge SHM system were investigated and completed. This development and finalization was framed around the demonstration installation on the Iowa Falls Arch Bridge. The hardware system focused on using off-the-shelf sensors that could be read in either “fast” or “slow” modes depending on the desired monitoring metric. As hoped, the installed system operated with very few problems. In terms of communications—in part due to the anticipated installation on the I-74 bridge over the Mississippi River—a hardline digital subscriber line (DSL) internet connection and grid power were used. During operation, this system would transmit data to a central server location where the data would be processed and then archived for future retrieval and use. The pilot monitoring system was developed for general performance evaluation purposes (construction, structural, environmental, etc.) such that it could be easily adapted to the Iowa DOT’s bridges and other monitoring needs. The system was developed allowing easy access to near real-time data in a format usable to Iowa DOT engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Phase I report describes a preliminary evaluation of a new compaction monitoring system developed by Caterpillar, Inc. (CAT), for use as a quality control and quality assurance (QC/QA) tool during earthwork construction operations. The CAT compaction monitoring system consists of an instrumented roller with sensors to monitor machine power output in response to changes in soil machine interaction and is fitted with a global positioning system (GPS) to monitor roller location in real time. Three pilot tests were conducted using CAT’s compaction monitoring technology. Two of the sites were located in Peoria, Illinois, at the Caterpillar facilities. The third project was an actual earthwork grading project in West Des Moines, Iowa. Typical construction operations for all tests included the following steps: (1) aerate/till existing soil; (2) moisture condition soil with water truck (if too dry); (3) remix; (4) blade to level surface; and (5) compact soil using the CAT CP-533E roller instrumented with the compaction monitoring sensors and display screen. Test strips varied in loose lift thickness, water content, and length. The results of the study show that it is possible to evaluate soil compaction with relatively good accuracy using machine energy as an indicator, with the advantage of 100% coverage with results in real time. Additional field trials are necessary, however, to expand the range of correlations to other soil types, different roller configurations, roller speeds, lift thicknesses, and water contents. Further, with increased use of this technology, new QC/QA guidelines will need to be developed with a framework in statistical analysis. Results from Phase I revealed that the CAT compaction monitoring method has a high level of promise for use as a QC/QA tool but that additional testing is necessary in order to prove its validity under a wide range of field conditions. The Phase II work plan involves establishing a Technical Advisor Committee, developing a better understanding of the algorithms used, performing further testing in a controlled environment, testing on project sites in the Midwest, and developing QC/QA procedures.