30 resultados para Palatal expansion techniques
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Many researchers have concluded that secondary or delayed ettringite is responsible for serious premature deterioration of concrete highways. In some poorly performing Iowa concretes, ettringite is the most common secondary mineral but its role in premature deterioration is uncertain since some researchers still maintain that secondary ettringite does not itself cause deterioration. The current research project was designed to determine experimentally if it is possible to reduce secondary ettringite formation in concrete by treating the concrete with commercial crystallization inhibitor chemicals. The hypothesis is such that if the amount of ettringite is reduced, there will also be a concomitant reduction of concrete expansion and cracking. If both ettringite formation and deterioration are simultaneously reduced, then the case for ettringite induced expansion/cracking is strengthened. The experiment used four commercial inhibitors - two phosphonates, a polyacrylic acid, and a phosphate ester. Concrete blocks were subjected to continuous immersion, wet/dry and freeze/thaw cycling in sodium sulfate solutions and in sulfate solutions containing an inhibitor. The two phosphonate inhibitors, Dequest 2060 and Dequest 2010, manufactured by Monsanto Co., were effective in reducing ettringite nucleation and growth in concrete. Two other inhibitors, Good-rite K752 and Wayhib S were somewhat effective, but less so than the two phosphonates. Rapid experiments with solution growth inhibition of ettringite without the presence of concrete phases were used to explore the mechanisms of inhibition of this mineral. Reduction of new ettringite formation in concrete blocks also reduced expansion and cracking of the blocks. This relationship clearly links concrete expansion with this mineral - a conclusion that some research workers have disputed despite theoretical arguments for such a relationship and despite numerous observations of ettringite mineralization in prematurely deteriorated concrete highways. Secondary ettringite nucleation and growth must cause concrete expansion because the only known effect of the inhibitor chemicals is to reduce crystal nucleation and growth, and the inhibitors cannot in any other way be responsible for the reduction in expansion. The mechanism of operation of the inhibitors on ettringite reduction is not entirely clear but the solution growth experiments show that they prevent crystallization of a soluble ettringite precursor gel. The present study shows that ettringite growth alone is not responsible for expansion cracking because the experiments showed that most expansion occurs under wet/dry cycling, less under freeze/thaw cycling, and least under continuous soaking conditions. It was concluded from the different amounts of damage that water absorption by newly-formed, minute ettringite crystals is responsible for part of the observed expansion under wet/dry conditions, and that reduction of freeze resistance by ettringite filling of air-entrainment voids is also important in freeze/thaw environments.
Investigation into Improved Pavement Curing Materials and Techniques: Part 2 - Phase III, March 2003
Resumo:
Appropriate curing is important for concrete to obtain the designed properties. This research was conducted to evaluate the curing effects of different curing materials and methods on pavement properties. At present the sprayed curing compound is a common used method for pavement and other concrete structure construction. Three curing compounds were selected for testing. Two different application rates were employed for the white-pigmented liquid curing compounds. The concrete properties of temperature, moisture content, conductivity, and permeability were examined at several test locations. It was found, in this project, that the concrete properties varied with the depth. Of the tests conducted (maturity, sorptivity, permeability, and conductivity), conductivity appears to be the best method to evaluate the curing effects in the field and bears potential for field application. The results indicated that currently approved curing materials in Iowa, when spread uniformly in a single or double application, provide adequate curing protection and meet the goals of the Iowa Department of Transportation. Experimental curing methods can be compared to this method through the use of conductivity testing to determine their application in the field.
Resumo:
Concrete curing is closely related to cement hydration, microstructure development, and concrete performance. Application of a liquid membrane-forming curing compound is among the most widely used curing methods for concrete pavements and bridge decks. Curing compounds are economical, easy to apply, and maintenance free. However, limited research has been done to investigate the effectiveness of different curing compounds and their application technologies. No reliable standard testing method is available to evaluate the effectiveness of curing, especially of the field concrete curing. The present research investigates the effects of curing compound materials and application technologies on concrete properties, especially on the properties of surface concrete. This report presents a literature review of curing technology, with an emphasis on curing compounds, and the experimental results from the first part of this research—lab investigation. In the lab investigation, three curing compounds were selected and applied to mortar specimens at three different times after casting. Two application methods, single- and double-layer applications, were employed. Moisture content, conductivity, sorptivity, and degree of hydration were measured at different depths of the specimens. Flexural and compressive strength of the specimens were also tested. Statistical analysis was conducted to examine the relationships between these material properties. The research results indicate that application of a curing compound significantly increased moisture content and degree of cement hydration and reduced sorptivity of the near-surface-area concrete. For given concrete materials and mix proportions, optimal application time of curing compounds depended primarily upon the weather condition. If a sufficient amount of a high-efficiency-index curing compound was uniformly applied, no double-layer application was necessary. Among all test methods applied, the sorptivity test is the most sensitive one to provide good indication for the subtle changes in microstructure of the near-surface-area concrete caused by different curing materials and application methods. Sorptivity measurement has a close relation with moisture content and degree of hydration. The research results have established a baseline for and provided insight into the further development of testing procedures for evaluation of curing compounds in field. Recommendations are provided for further field study.
Resumo:
Standards for the construction of full-depth patching in portland cement concrete pavement usually require replacement of all deteriorated based materials with crushed stone, up to the bottom of the existing pavement layer. In an effort to reduce the time of patch construction and costs, the Iowa Department of Transportation and the Department of Civil, Construction and Environmental Engineering at Iowa State University studied the use of extra concrete depth as an option for base construction. This report compares the impact of additional concrete patching material depth on rate of strength gain, potential for early opening to traffic, patching costs, and long-term patch performance. This report also compares those characteristics in terms of early setting and standard concrete mixes. The results have the potential to change the method of Portland cement concrete pavement patch construction in Iowa.
Resumo:
Pavement settlement occurring in and around utility cuts is a common problem, resulting in uneven pavement surfaces, annoyance to drivers, and ultimately, further maintenance. A survey of municipal authorities and field and laboratory investigations were conducted to identify the factors contributing to the settlement of utility cut restorations in pavement sections. Survey responses were received from seven cities across Iowa and indicate that utility cut restorations often last less than two years. Observations made during site inspections showed that backfill material varies from one city to another, backfill lift thickness often exceeds 12 inches, and the backfill material is often placed at bulking moisture contents with no Quality control/Quality Assurance. Laboratory investigation of the backfill materials indicate that at the field moisture contents encountered, the backfill materials have collapse potentials up to 35%. Falling Weight Deflectometer (FWD) deflection data and elevation shots indicate that the maximum deflection in the pavement occurs in the area around the utility cut restoration. The FWD data indicate a zone of influence around the perimeter of the restoration extending two to three feet beyond the trench perimeter. The research team proposes moisture control, the use of 65% relative density in a granular fill, and removing and compacting the native material near the ground surface around the trench. Test sections with geogrid reinforcement were also incorporated. The performance of inspected and proposed utility cuts needs to be monitored for at least two more years.
Resumo:
The Iowa Department of Economic Development (IDED) helps businesses expand or locate all or part of their business in Iowa. It just makes sense for companies engaged in advanced manufacturing, biosciences and information solutions/financial services to look at Iowa and IDED helps to ensure theireconomic development timelines are met. Iowa is nationally recognized as an innovator in helping businesses by meeting their development needs in a timely and effective manner. IDED networks with Regulatory Assistance Coordinators in agencies across state government to reduce response time to businesses. This agency coordination helps to ensure that regulatory and compliance questions, or other needs associated with project site development and facility expansion are serviced quickly. We have listed information below about some of the more common regulatory requirements related to site development and expansion.
Resumo:
The Iowa Department of Economic Development (IDED) helps businesses expand or locate all or part of their business in Iowa. It just makes sense for companies engaged in advanced manufacturing, biosciences and information solutions/financial services to look at Iowa and IDED helps to ensure their economic development timelines are met. Iowa is nationally recognized as an innovator in helping businesses by meeting their development needs in a timely and effective manner. IDED networks with Regulatory Assistance Coordinators in agencies across state government to reduce response time to businesses. This agency coordination helps to ensure that regulatory and compliance questions, or other needs associated with project site development and facility expansion are serviced quickly. We have listed information below about some of the more common regulatory requirements related to site development and expansion.
Resumo:
As our nation’s highway system continues to age, asphalt maintenance and rehabilitation techniques have become increasingly important. The deterioration of pavement over time is inevitable. Preventive maintenance is a strategy to extend the serviceable life of a pavement by applying cost-effective treatments that slow the deterioration of pavement and extend its usable life. Thin maintenance surfaces (TMSs) are preventive maintenance techniques that can effectively prolong the life of pavement when applied at an opportune time. Common TMSs include bituminous fog seal, bituminous seal coat, slurry seal, cold in-place recycling (CIR), and micro-surfacing. This research project investigated ways to improve Iowa Statewide Urban Design and Specifications (SUDAS) and Iowa Department of Transportation (DOT) documents regarding asphalt roadway maintenance and rehabilitation. Researchers led an effort to review and help ensure that the documents supporting proper selection, design, and construction for asphalt maintenance and rehabilitation techniques reflect the latest research findings on these processes: seal coating, slurry sealing, micro-surfacing, and fog sealing. Full results of this investigation are included in this report and its appendices. This report also presents a summary of the recommendations based on the study results.
Resumo:
The Transportation Equity Act of the 21st Century (TEA-21) (23 CFR) mandated environmental streamlining in order to improve transportation project delivery without compromising environmental protection. In accordance with TEA-21, the environmental review process for this project has been documented as a Streamlined Environmental Assessment (EA). This document addresses only those resources or features that apply to the project. This allowed study and discussion of resources present in the study area, rather than expend effort on resources that were either not present or not impacted. Although not all resources are discussed in the EA, they were considered during the planning process and are documented in the Streamlined Resource Summary, shown in Appendix A. The following table shows the resources considered during the environmental review for this project. The first column with a check means the resource is present in the project area. The second column with a check means the impact to the resource warrants more discussion in this document. The other listed resources have been reviewed and are included in the Streamlined Resource Summary.
Resumo:
Weathering steel is commonly used as a cost-effective alternative for bridge superstructures, as the costs and environmental impacts associated with the maintenance/replacement of paint coatings are theoretically eliminated. The performance of weathering steel depends on the proper formation of a surface patina, which consists of a dense layer of corrosion product used to protect the steel from further atmospheric corrosion. The development of the weathering steel patina may be hindered by environmental factors such as humid environments, wetting/drying cycles, sheltering, exposure to de-icing chlorides, and design details that permit water to pond on steel surfaces. Weathering steel bridges constructed over or adjacent to other roadways could be subjected to sufficient salt spray that would impede the development of an adequate patina. Addressing areas of corrosion on a weathering steel bridge superstructure where a protective patina has not formed is often costly and negates the anticipated cost savings for this type of steel superstructure. Early detection of weathering steel corrosion is important to extending the service life of the bridge structure; however, written inspection procedures are not available for inspectors to evaluate the performance or quality of the patina. This project focused on the evaluation of weathering steel bridge structures, including possible methods to assess the quality of the weathering steel patina and to properly maintain the quality of the patina. The objectives of this project are summarized as follows: Identify weathering steel bridge structures that would be most vulnerable to chloride contamination, based on location, exposure, environment, and other factors. Identify locations on an individual weathering steel bridge structure that would be most susceptible to chloride contamination, such as below joints, splash/spray zones, and areas of ponding water or debris. Identify possible testing methods and/or inspection techniques for inspectors to evaluate the quality of the weathering steel patina at locations discussed above. Identify possible methods to measure and evaluate the level of chloride contamination at the locations discussed above. Evaluate the effectiveness of water washing on removing chlorides from the weathering steel patina. Develop a general prioritization for the washing of bridge structures based on the structure’s location, environment, inspection observations, patina evaluation findings, and chloride test results.
Resumo:
Many of the bridges in the state of Iowa have type ‘CF’, ‘EE’, or ‘EF’ expansion joints installed in the bridge approach slabs. These joints, which are typically 4” wide, are currently filled with a foam expansion joint material that is covered with a sealant. Over time the sealant begins to pull off of the walls of the joint and it ultimately fails. The joint, which is now exposed to the weather, is then filled with water and solids. The foam joint material, which is lighter than water, floats out of the joint onto the highway. This foam resembles a large 4” X 6” plank and poses a threat to motorists. A possible solution to this problem would be to replace the foam material with rubber buffings. Rubber buffings are a by-product of the tire retread industry.
Resumo:
This research was initiated in 1991 as a part of a whitetopping project to study the effectiveness of various techniques to enhance bond strength between a new portland cement concrete (PCC) overlay and an existing asphalt cement concrete (ACC) pavement surface. A 1,676 m (5,500 ft) section of county road R16 in Dallas County was divided into 12 test sections. The various techniques used to enhance bond were power brooming, power brooming with air blast, milling, cement and water grout, and emulsion tack coat. Also, two sections were planed to a uniform cross-section, two pavement thicknesses were placed, and two different concrete mix proportions were used. Bond strength was perceived to be the key to determining an appropriate design procedure for whitetopping. If adequate bond is achieved, a bonded PCC overlay technique can be used for design. Otherwise, an unbonded overlay procedure may be more appropriate. Conclusions are as follows: (1) Bond Strength Differences - Milling increased bond strength versus no milling. Tack coat showed increased bond strength versus no tack coat. Planing, Air Blast and Grouting did not provide noticeable improvements in bond strength; nor did different PCC types or thicknesses affect bond strength significantly. (2) Structure - Structural measurements correlated strongly with the wide variation in pavement thicknesses. They did not provide enough information to determine the strength of bonding or the level of support being provided by the ACC layer. Longitudinal cracking correlated with PCC thicknesses and with planing. (3) Bond Over Time - The bond between PCC and ACC layers is degrading over time in the outside wheel path in all of the sections except tack coat (section 12). The bond strength in the section with tack coat was lower than the others, but remained relatively steady.
Resumo:
This project was initiated in 1988 to study the effectiveness of four different construction techniques for establishing a stable base on a granular surfaced roadway. After base stabilization, the roadway was then seal coated, eliminating dust problems associated with granular surfaced roads. When monies become available, the roadway can be surfaced with a more permanent structure. A 2.8 mi (4.5 km) section of the Horseshoe Road in Dubuque County was divided into four divisions for this study. This report discusses the procedures used during construction of these different divisions. Problems and possible solutions have been analyzed to better understand the capabilities of the materials and construction techniques used on the project. The project had the following results: High structural ratings and soil K factors for the BIO CAT and Consolid bases did not translate to good roadway performance; the macadam base had the best overall performance; the tensar fabric had no noticeable effect on the macadam base; and the HFE-300 performed acceptably.
Resumo:
The objective of this research was to evaluate two experimental D.S. Brown, Type SL450 and one D.S. Brown, Type SL750 expansion assemblies to identify possible construction problems and to determine the long term performances. These joints were installed in Wapello County on Jefferson Street viaduct in Ottumwa, Iowa. Visual inspections were made yearly. There is an indication that there may be a slow leakage at all three joints. The joint assemblies have performed well.
Resumo:
The objective of this research was to evaluate two experimental Acme MSB neoprene expansion assemblies to identify possible construction problems and to determine the long term performance. These joints were installed in Black Hawk County on the curved bridge of ramp H from US 218 to I-380 in Waterloo, Iowa. Visual inspections were made yearly. There is slow leakage at one joint and indication that there is some slow leakage of both joints. The joint assemblies have performed well.