10 resultados para Negative Constant Curvature
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Summary of food stamp errors.
Resumo:
A-8A summary of food stamp errors active and negative cases
Resumo:
Summary of food stamp errors.
Resumo:
A-8a Summary of Food Stamp Errors Active and Negative Cases, Apr. 2004 - Sept. 2004
Resumo:
A-8a Summary of Food Stamp Errors Active and Negative Cases, Oct. 2004 - Mar. 2005
Resumo:
Summary of food stamp errors.
Resumo:
Summary of food stamp errors.
Resumo:
Summary of food stamp errors.
Resumo:
A water reducing and retarding type admixture in concrete is commonly used on continuous bridge deck pours in Iowa. The concrete placed in the negative moment areas must remain plastic until all the dead load deflection due to the new deck's weight occurs. If the concrete does not remain plastic until the total deflection has occurred, structural cracks will develop in these areas. Retarding type admixtures will delay the setting time of concrete and prevent structural cracks if added in the proper amounts. In Section 2412.02 of the Standard Specifications, 1972, Iowa State Highway Commission, it states, "The admixture shall be used in amounts recommended by the manufacturer for conditions which prevail on the project and as approved by the engineer." The conditions which prevail on the project depend on temperature, humidity, wind conditions, etc. Each of these factors will affect the setting rate of the plastic concrete. The purpose of this project is to provide data that will be useful to field personnel concerning the retardation of concrete setting times, and how the of sets will vary with different addition rates and curing temperatures holding all other atmospheric variables constant.
Resumo:
Multi-span pre-tensioned pre-stressed concrete beam (PPCB) bridges made continuous usually experience a negative live load moment region over the intermediate supports. Conventional thinking dictates that sufficient reinforcement must be provided in this region to satisfy the strength and serviceability requirements associated with the tensile stresses in the deck. The American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Specifications recommend the negative moment reinforcement (b2 reinforcement) be extended beyond the inflection point. Based upon satisfactory previous performance and judgment, the Iowa Department of Transportation (DOT) Office of Bridges and Structures (OBS) currently terminates b2 reinforcement at 1/8 of the span length. Although the Iowa DOT policy results in approximately 50% shorter b2 reinforcement than the AASHTO LRFD specifications, the Iowa DOT has not experienced any significant deck cracking over the intermediate supports. The primary objective of this project was to investigate the Iowa DOT OBS policy regarding the required amount of b2 reinforcement to provide the continuity over bridge decks. Other parameters, such as termination length, termination pattern, and effects of the secondary moments, were also studied. Live load tests were carried out on five bridges. The data were used to calibrate three-dimensional finite element models of two bridges. Parametric studies were conducted on the bridges with an uncracked deck, a cracked deck, and a cracked deck with a cracked pier diaphragm for live load and shrinkage load. The general conclusions were as follows: -- The parametric study results show that an increased area of the b2 reinforcement slightly reduces the strain over the pier, whereas an increased length and staggered reinforcement pattern slightly reduce the strains of the deck at 1/8 of the span length. -- Finite element modeling results suggest that the transverse field cracks over the pier and at 1/8 of the span length are mainly due to deck shrinkage. -- Bridges with larger skew angles have lower strains over the intermediate supports. -- Secondary moments affect the behavior in the negative moment region. The impact may be significant enough such that no tensile stresses in the deck may be experienced.