36 resultados para Load,Load models

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Recent reports indicate that of the over 25,000 bridges in Iowa, slightly over 7,000 (29%) are either structurally deficient or functionally obsolete. While many of these bridges may be strengthened or rehabilitated, some simply need to be replaced. Before implementing one of these options, one should consider performing a diagnostic load test on the structure to more accurately assess its load carrying capacity. Frequently, diagnostic load tests reveal strength and serviceability characteristics that exceed the predicted codified parameters. Usually, codified parameters are very conservative in predicting lateral load distribution characteristics and the influence of other structural attributes. As a result, the predicted rating factors are typically conservative. In cases where theoretical calculations show a structural deficiency, it may be very beneficial to apply a "tool" that utilizes a more accurate theoretical model which incorporates field-test data. At a minimum, this approach results in more accurate load ratings and many times results in increased rating factors. Bridge Diagnostics, Inc. (BDI) developed hardware and software that are specially designed for performing bridge ratings based on data obtained from physical testing. To evaluate the BDI system, the research team performed diagnostic load tests on seven "typical" bridge structures: three steel-girder bridges with concrete decks, two concrete slab bridges, and two steel-girder bridges with timber decks. In addition, a steel-girder bridge with a concrete deck previously tested and modeled by BDI was investigated for model verification purposes. The tests were performed by attaching strain transducers on the bridges at critical locations to measure strains resulting from truck loading positioned at various locations on the bridge. The field test results were used to develop and validate analytical rating models. Based on the experimental and analytical results, it was determined that bridge tests could be conducted relatively easy, that accurate models could be generated with the BDI software, and that the load ratings, in general, were greater than the ratings, obtained using the codified LFD Method (according to AASHTO Standard Specifications for Highway Bridges).

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The spacing of adjacent wheel lines of dual-lane loads induces different lateral live load distributions on bridges, which cannot be determined using the current American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) or Load Factor Design (LFD) equations for vehicles with standard axle configurations. Current Iowa law requires dual-lane loads to meet a five-foot requirement, the adequacy of which needs to be verified. To improve the state policy and AASHTO code specifications, it is necessary to understand the actual effects of wheel-line spacing on lateral load distribution. The main objective of this research was to investigate the impact of the wheel-line spacing of dual-lane loads on the lateral load distribution on bridges. To achieve this objective, a numerical evaluation using two-dimensional linear elastic finite element (FE) models was performed. For simulation purposes, 20 prestressed-concrete bridges, 20 steel bridges, and 20 slab bridges were randomly sampled from the Iowa bridge database. Based on the FE results, the load distribution factors (LDFs) of the concrete and steel bridges and the equivalent lengths of the slab bridges were derived. To investigate the variations of LDFs, a total of 22 types of single-axle four-wheel-line dual-lane loads were taken into account with configurations consisting of combinations of various interior and exterior wheel-line spacing. The corresponding moment and shear LDFs and equivalent widths were also derived using the AASHTO equations and the adequacy of the Iowa DOT five-foot requirement was evaluated. Finally, the axle weight limits per lane for different dual-lane load types were further calculated and recommended to complement the current Iowa Department of Transportation (DOT) policy and AASHTO code specifications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This guide provides a summary of the factors and design theories that should be considered when designing dowel load transfer systems for concrete pavement systems (including dowel basket design and fabrication) and presents recommendations for widespread adoption (i.e., standardization). Development of the guide was sponsored by the National Concrete Consortium with the goal of helping practitioners develop and implement dowel load transfer designs based on knowledge about current research and best practices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Load Rating: . , :Evaluation of the capacity of a bridge to carry vehicle Inventory Rating: Lbad level which can safely utilize the bridge for an indefinite period of time Operating Rating: Absolute maximum permissible load level for the bridge A load rating states the load in tons which a vehicle can impose on a bridge. Changes in guidelines, standards, and customary uses of bridges require analyses of bridges to be updated and re-evaluated. In this report, twenty-two secondary bridge standards for three types of bridges are rated for the AASHTO HS20-44 vehicle configuration and three typical Iowa legal vehicles

Relevância:

40.00% 40.00%

Publicador:

Resumo:

• Examine current pile design and construction procedures used by the Iowa Department of Transportation (DOT). • Recommend changes and improvements to these procedures that are consistent with available pile load test data, soils information, and bridge design practice recommended by the Load and Resistance Factor Design (LRFD) approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this work, Pilot Project - Demonstration of Capabilities and Benefits of Bridge Load Rating through Physical Testing, was to demonstrate the capabilities for load testing and rating bridges in Iowa, study the economic benefit of performing such testing, and perform outreach to local, state, and national engineers on the topic of bridge load testing and rating. This report documents one of three bridges inspected, load tested, and load rated as part of the project, the Sioux County Bridge (FHWA #308730), including testing procedures and performance of the bridge under static loading along with the calculated load rating from the field-calibrated analytical model. Two parallel reports document the testing and load rating of the Ida County Bridge (FHWA #186070) and the Johnson County Bridge (FHWA #205750). A tech brief provides overall information about the project.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this work, Pilot Project - Demonstration of Capabilities and Benefits of Bridge Load Rating through Physical Testing, was to demonstrate the capabilities for load testing and rating bridges in Iowa, study the economic benefit of performing such testing, and perform outreach to local, state, and national engineers on the topic of bridge load testing and rating. This report documents one of three bridges inspected, load tested, and load rated as part of the project, the Ida County Bridge (FHWA #186070), including testing procedures and performance of the bridge under static loading along with the calculated load rating from the field-calibrated analytical model. Two parallel reports document the testing and load rating of the Sioux County Bridge (FHWA #308730) and the Johnson County Bridge (FHWA #205750). A tech brief provides overall information about the project.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this work, Pilot Project - Demonstration of Capabilities and Benefits of Bridge Load Rating through Physical Testing, was to demonstrate the capabilities for load testing and rating bridges in Iowa, study the economic benefit of performing such testing, and perform outreach to local, state, and national engineers on the topic of bridge load testing and rating. This report documents one of three bridges inspected, load tested, and load rated as part of the project, the Johnson County Bridge (FHWA #205750), including testing procedures and performance of the bridge under static loading along with the calculated load rating from the field-calibrated analytical model. Two parallel reports document the testing and load rating of the Sioux County Bridge (FHWA #308730) and the Ida County Bridge (FHWA #186070). A tech brief provides overall information about the project.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This project demonstrated the capabilities for load testing bridges in Iowa, developed and presented a webinar to local and state engineers, and produced a spreadsheet and benefit evaluation matrix that others can use to preliminarily assess where bridge testing may be economically feasible given truck traffic and detour lengths.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this work, Pilot Project - Demonstration of Capabilities and Benefits of Bridge Load Rating through Physical Testing, was to demonstrate the capabilities for load testing and rating bridges in Iowa, study the economic benefit of performing such testing, and perform outreach to local, state, and national engineers on the topic of bridge load testing and rating. The three final reports document one each of three bridges inspected, load tested, and load rated as part of the project. The bridges include the Sioux County Bridge (FHWA #308730), the Ida County Bridge (FHWA #186070), and the Johnson County Bridge (FHWA #205750). Actions included testing procedures and performance of the bridge under static loading along with the calculated load rating from the field-calibrated analytical model. A Tech Transfer Summary provides overall information about the project.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this report, sixteen secondary and primary bridge standards for two types of bridges are rated for AASHTO HS20-44 vehicle configuration utilizing Load Factor methodology. The ratings apply only to those bridges which: (1) are built according to the applicable bridge standard plans, (2) have no structural deterioration or damage, and (3) have no added wearing surface in excess of one-half inch integral wearing surface.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this report, 25 secondary bridge standards for three types of bridges are rated for the AASHTO HS20-44 vehicle configuration and five typical Iowa legal vehicles. The ratings apply only to those bridges which: (1) are built according to the applicable bridge standard plans, (2) have no structural deterioration or damage, and (3) have no added wearing surface in excess of 0.5-in. (1.27-cm) integral wearing surface. Appendix A contains the results of the original October 1982 report on load ratings for standard bridges.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Each year several prestressed concrete girder bridges in Iowa and other states are struck and damaged by vehicles with loads too high to pass under the bridge. Whether or not intermediate diaphragms play a significant role in reducing the effect of these unusual loading conditions has often been a topic of discussion. A study of the effects of the type and location of intermediate diaphragms in prestressed concrete girder bridges when the bridge girder flanges were subjected to various levels of vertical and horizontal loading was undertaken. The purpose of the research was to determine whether steel diaphragms of any conventional configuration can provide adequate protection to minimize the damage to prestressed concrete girders caused by lateral loads, similar to the protection provided by the reinforced concrete intermediate diaphragms presently being used by the Iowa Department of Transportation. The research program conducted and described in this report included the following: A comprehensive literature search and survey questionnaire were undertaken to define the state-of-the-art in the use of intermediate diaphragms in prestressed concrete girder bridges. A full scale, simple span, restressed concrete girder bridge model, containing three beams was constructed and tested with several types of intermediate diaphragms located at the one-third points of the span or at the mid-span. Analytical studies involving a three-dimensional finite element analysis model were used to provide additional information on the behavior of the experimental bridge. The performance of the bridge with no intermediate diaphragms was quite different than that with intermediate diaphragms in place. All intermediate diaphragms tested had some effect in distributing the loads to the slab and other girders, although some diaphragm types performed better than others. The research conducted has indicated that the replacement of the reinforced concrete intermediate diaphragms currently being used in Iowa with structural steel diaphragms may be possible.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The load ratings for these Standard bridges were calculated in compliance with the 1978 AASHTO Manual for Maintenance Inspection of Bridges, using the appropriate allowable stresses for the materials specified by the Standard plans. Distribution of loads is in compliance with the Manual unless otherwise noted. Except for truss spans, all bridges with roadway widths of 18 ft. or less were rated for one lane of traffic. All 18 ft. roadway truss bridges were rated for both one and two lanes of traffic. All bridges with roadway widths exceeding 18 ft. were rated for two lanes of traffic. If the posting rating for two lane bridges was less than legal, then the bridges were rated for traffic restricted to one lane, or to one lane centered in the roadway, as noted on the summary sheet. The ratings are applicable to bridges built in accordance with the standard plans and which exhibit no significant deterioration or damage to the structural members, and which have no added wearing surface material in excess of that noted on the summary sheets and used in the calculations. The inventory and operating ratings were based upon the standard AASHTO HS20-44 loading. The legal load ratings were based upon the three typical Iowa legal vehicles shown on page 5. The legal load ratings were based upon the maximum allowable Operating Rating stresses specified in the Manual. Refer to notations on the summary sheets for additional qualifications on the load ratings for specific standard bridge series. Load ratings for standard bridges with wood floors must be based upon existing conditions of attachment of the wood flooring to the top flanges of longitudinal steel stringers. The ratings must be reevaluated if the existing lateral support conditions are not in accordance with conditions used for the rating and noted on the summary sheets. Details of most of the standard bridges are included in the three books of "Iowa State Highway Commission, Bridge Standards," issued in June, 1972. Copies of plans for those standard bridges that were rated, and that are not included in the original books of standard plans, are being furnished under separate cover with these rating summaries.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As a result of the construction of the Saylorville Dam and Reservoir on the Des Moines River, six highway bridges are scheduled for removal. Five of these are old high-truss single-lane bridges, each bridge having several simple spans. The other bridge is a fairly modern (1955) double 4-span continuous beam-and-slab composite highway bridge. The availability of these bridges affords an unusual opportunity for study of the behavior of full-scale bridges. Because of the magnitude of the potential testing program, a feasibility study was initiated and the results are presented in this two-part final report. Part I summarizes the findings and Part II presents the supporting detailed information.