81 resultados para Ground water resource management

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Report on a review of selected general and application controls over the Iowa Department of Transportation’s Resource Management System for the period May 5, 2006 through August 4, 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Iowa Department of Administrative Services - Human Resources Enterprise (DAS-HRE) has developed a variety of tools and resources to address those concerns. Loss of institutional knowledge, or knowledge transfer as it is more frequently referred to, is one of the main topics of the Workforce Planning Guide. Potential difficulties finding new workers was one of the major reasons for adding a chapter on recruitment in the Applicant Screening Manual.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report contains the results of geological studies in 22 counties in northeast Iowa. Pertinent geologic, hydrologic and water quality data were compiled and analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purposes of this report are to delineate and describe aquifers in Cerro Gordo County, evaluate the availability and quality of water in the aquifers, supply data on ground-water utilization, and determine the rate of growth and the magnitude of the cone of drawdown in the Mason City area. It includes photos and fold-out maps

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The information presented in this summary document has been based on the comprehensive, "Task Force Report on Water Resource Availability", prepared by the Iowa Geological Survey and filed with the Iowa Natural Resources Council. The reader should refer to the task force document for more detailed information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

US Geological Survey (USGS) based elevation data are the most commonly used data source for highway hydraulic analysis; however, due to the vertical accuracy of USGS-based elevation data, USGS data may be too “coarse” to adequately describe surface profiles of watershed areas or drainage patterns. Additionally hydraulic design requires delineation of much smaller drainage areas (watersheds) than other hydrologic applications, such as environmental, ecological, and water resource management. This research study investigated whether higher resolution LIDAR based surface models would provide better delineation of watersheds and drainage patterns as compared to surface models created from standard USGS-based elevation data. Differences in runoff values were the metric used to compare the data sets. The two data sets were compared for a pilot study area along the Iowa 1 corridor between Iowa City and Mount Vernon. Given the limited breadth of the analysis corridor, areas of particular emphasis were the location of drainage area boundaries and flow patterns parallel to and intersecting the road cross section. Traditional highway hydrology does not appear to be significantly impacted, or benefited, by the increased terrain detail that LIDAR provided for the study area. In fact, hydrologic outputs, such as streams and watersheds, may be too sensitive to the increased horizontal resolution and/or errors in the data set. However, a true comparison of LIDAR and USGS-based data sets of equal size and encompassing entire drainage areas could not be performed in this study. Differences may also result in areas with much steeper slopes or significant changes in terrain. LIDAR may provide possibly valuable detail in areas of modified terrain, such as roads. Better representations of channel and terrain detail in the vicinity of the roadway may be useful in modeling problem drainage areas and evaluating structural surety during and after significant storm events. Furthermore, LIDAR may be used to verify the intended/expected drainage patterns at newly constructed highways. LIDAR will likely provide the greatest benefit for highway projects in flood plains and areas with relatively flat terrain where slight changes in terrain may have a significant impact on drainage patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tillage and manure application practices significantly impact surface and ground water quality in Iowa and other Midwestern states. Tillage and manure application that incorporates residue and disturbs soil result in higher levels of soil erosion and surface runoff. Phosphorus and sediment loading are closely linked to the increase in soil erosion and surface water runoff. Manure application (i.e., injection or incorporation) reduces surface residue cover, which can worsen soil erosion regardless of the tillage management system being used. An integrated system approach to manure and tillage management is critical to ensure effi cient nutrient use and improvement of soil and water quality. This approach, however, requires changes in manure application technology and tillage system management to ensure the success of an integrated

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iowa’s surface and ground water serves as a precious resource for industries, businesses and communities and provides state citizens and visitors with invaluable cultural and recreational opportunities. While water quality is regulated by the Iowa Department of Natural Resources (IDNR), compliance assistance is available through the Iowa Department of Economic Development (IDED) Water Quality Advocacy Program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

What is in this review produced by The Iowa Department of Agricultural and Land Stewardship: Special Points of Interest: • CREP wetlands remove 40-90% of the nitrate and 90+% of the herbicide in tile drainage water from upper- lying croplands. • The watershed approach is comprehensive, efficient and effective resource management. • The Mines & Minerals Bureau, through the AML Program, worked with various watershed groups to secure an additional $1 million dollars in funding for the construction on AML projects in Marion and Mahaska counties. • Iowa Learning Farm is Building a Culture of Conservation: Farmer to Farmer—Iowan to Iowan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A snapshot of water resource trends prepared by the Iowa DNR in collaboration with the Iowa Department of Agriculture and Land Stewardship, the U.S. Geological Survey, and The Iowa Homeland Security and Emergency Management Department.