12 resultados para Field supervision and work conditions

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asphalt wearing surfaces are commonly used on timber bridges with transverse glued-laminated deck panel systems to help protect the timber components. However, poor performance of these asphalt wearing surfaces in the past has resulted in repeated repair and increased maintenance costs. This report describes the field demonstration and testing of a newly-constructed, glued-laminated timber girder bridge. Previous field work revealed that differential panel deflections in the glued-laminated deck were one significant factor resulting in the premature failure of the asphalt wearing surfaces on these bridges. In addition, laboratory work subsequent to the field testing attempted to address the problematic asphalt cracking common in transverse glued-laminated panel decks by testing several deck joint connection alternatives. The field demonstration project described in this report showcases the retrofit detail that was determined to provide the best field performance. The project was a cooperative effort between the Bridge Engineering Center (BEC) at Iowa State University and the United States Department of Agriculture (USDA) Forest Service Forest Products Laboratory (FPL).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supplementary cementitious materials (SCM) have become common parts of modern concrete practice. The blending of two or three cementitious materials to optimize durability, strength, or economics provides owners, engineers, materials suppliers, and contractors with substantial advantages over mixtures containing only portland cement. However, these advances in concrete technology and engineering have not always been adequately captured in specifications for concrete. Users need specific guidance to assist them in defining the performance requirements for a concrete application and the selection of optimal proportions of the cementitious materials needed to produce the required durable concrete. The fact that blended cements are currently available in many regions increases options for mixtures and thus can complicate the selection process. Both Portland and blended cements have already been optimized by the manufacturer to provide specific properties (such as setting time, shrinkage, and strength gain). The addition of SCMs (as binary, ternary, or even more complex mixtures) can alter these properties, and therefore has the potential to impact the overall performance and applications of concrete. This report is the final of a series of publications describing a project aimed at addressing effective use of ternary systems. The work was conducted in several stages and individual reports have been published at the end of each stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In view of the energy, environmental, and economic advantages of the foamed asphalt process using local aggregates in cold mixes and the promising results from Research Project HR-212, a 4.2-mile section of county road in Muscatine County was built with foamed asphalt and local aggregates during August-September 1983. Extensive laboratory evaluation was carried out on five plant mixes representing foamed mixes used in the nine test sections, a laboratory prepared foamed mix, and a laboratory prepared hot mix similar to Plant Mix 1. The foamed mixes were compacted, cured under 15 curing conditions and tested for bulk specific gravity, Marshall stability at 77° F and at 140° F, cured moisture content, resilient modulus and effects of moisture damage due to freeze-thaw cycles, water soaking, and vacuum saturation. In addition, four sets of 83 core samples were taken at 1 to 15 months and tested for moisture content, specific gravity, Marshall stability, and resilient modulus. In summary, the test road has performed satisfactorily for almost two years. The few early construction problems encountered were to be expected for experimental projects dealing with new materials and technologies. Overall results to date are encouraging and foamed asphalt mixes have proved to have the potential as a viable base material in areas where marginal aggregates are available. It is hoped and expected that performance evaluation of the test sections will be continued and that more foamed asphalt trial projects will be constructed and monitored so that experiences and findings from this project can be verified and mix design criteria can be gradually established. For future foamed asphalt projects it is recommended that anti-stripping additives, such as hydrated lime, be added in view of the potential moisture susceptibility of foamed mixes observed in the laboratory evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assess the international competitiveness of the dairy industries in Argentina and Chile, combining recent market intelligence gathered from field visits with quantitative simulations of global policy reform scenarios. Both countries exhibit strong potential for export growth but face significant internal and external barriers to expanding their dairy industries. Global policy reforms would resolve some of the international obstacles to their expansion. Argentina has great potential, but it is handicapped by its current macroeconomic policies, trade policy distortions, and the uncertainty associated with policy implementation. Chile is more limited in terms of natural capacity for expansion, but it has a positive trade and investment environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a previous Data Download, we reported that about 27% of offenders under CBC field supervision and 42.6% of offenders in residential facilities are in need of mental health treatment services. In addition,more than 35% of offenders needing mental health treatment are not receiving services.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of rapid construction technologies has been recognized by the Federal Highway Administration (FHWA) and the Iowa DOT Office of Bridges and Structures. Recognizing this a two-lane single-span precast box girder bridge was constructed in 2007 over a stream. The bridge’s precast elements included precast cap beams and precast box girders. Precast element fabrication and bridge construction were observed, two precast box girders were tested in the laboratory, and the completed bridge was field tested in 2007 and 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of rapid construction technologies has been recognized by the Federal Highway Administration (FHWA) and the Iowa DOT Office of Bridges and Structures. Black Hawk County (BHC) has developed a precast modified beam-in-slab bridge (PMBISB) system for use with accelerated construction. A typical PMBISB is comprised of five to six precast MBISB panels and is used on low volume roads, on short spans, and is installed and fabricated by county forces. Precast abutment caps and a precast abutment backwall were also developed by BHC for use with the PMBISB. The objective of the research was to gain knowledge of the global behavior of the bridge system in the field, to quantify the strength and behavior of the individual precast components, and to develop a more time efficient panel-to-panel field connection. Precast components tested in the laboratory include two precast abutment caps, three different types of deck panel connections, and a precast abutment backwall. The abutment caps and backwall were tested for behavior and strength. The three panel-to-panel connections were tested in the lab for strength and were evaluated based on cost and constructability. Two PMBISB were tested in the field to determine stresses, lateral distribution characteristics, and overall global behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of the overall research program of evaluating asphalt emulsion slurry seal as a pavement maintenance material, 31 duplicate 500-ft test sections were constructed on U.S. 6 between Adel and Waukee in Dallas County during September and October of 1978. These test sections included combinations of eight aggregates, two gradings, three asphalt emulsions, two mineral fillers, and a range of emulsion contents determined by laboratory mix designs. The emulsion contents of the test sections varied from 10.3% for Section 7A (Ferguson coarse) to 32.9% for Section 31A (lightweight aggregate). The post-construction performance evaluation of the test sections, consisting primarily of the friction tests and surface appearance observations, was conducted at different time intervals up to 24 months after construction. At the 24-month final evaluation, most of the test sections had carried a total of 1.4 million vehicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance audit conducted by the Department of Management concerned the licensed substance abuse treatment programs in Department of Corrections’ institutions. This report uses the same methodology, modified for community-based corrections populations, to examine the delivery of substance abuse treatment for higher risk offenders under field supervision, and all offenders who were assigned to community corrections residential facilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blowing and drifting of snow is a major concern for transportation efficiency and road safety in regions where their development is common. One common way to mitigate snow drift on roadways is to install plastic snow fences. Correct design of snow fences is critical for road safety and maintaining the roads open during winter in the US Midwest and other states affected by large snow events during the winter season and to maintain costs related to accumulation of snow on the roads and repair of roads to minimum levels. Of critical importance for road safety is the protection against snow drifting in regions with narrow rights of way, where standard fences cannot be deployed at the recommended distance from the road. Designing snow fences requires sound engineering judgment and a thorough evaluation of the potential for snow blowing and drifting at the construction site. The evaluation includes site-specific design parameters typically obtained with semi-empirical relations characterizing the local transport conditions. Among the critical parameters involved in fence design and assessment of their post-construction efficiency is the quantification of the snow accumulation at fence sites. The present study proposes a joint experimental and numerical approach to monitor snow deposits around snow fences, quantitatively estimate snow deposits in the field, asses the efficiency and improve the design of snow fences. Snow deposit profiles were mapped using GPS based real-time kinematic surveys (RTK) conducted at the monitored field site during and after snow storms. The monitored site allowed testing different snow fence designs under close to identical conditions over four winter seasons. The study also discusses the detailed monitoring system and analysis of weather forecast and meteorological conditions at the monitored sites. A main goal of the present study was to assess the performance of lightweight plastic snow fences with a lower porosity than the typical 50% porosity used in standard designs of such fences. The field data collected during the first winter was used to identify the best design for snow fences with a porosity of 50%. Flow fields obtained from numerical simulations showed that the fence design that worked the best during the first winter induced the formation of an elongated area of small velocity magnitude close to the ground. This information was used to identify other candidates for optimum design of fences with a lower porosity. Two of the designs with a fence porosity of 30% that were found to perform well based on results of numerical simulations were tested in the field during the second winter along with the best performing design for fences with a porosity of 50%. Field data showed that the length of the snow deposit away from the fence was reduced by about 30% for the two proposed lower-porosity (30%) fence designs compared to the best design identified for fences with a porosity of 50%. Moreover, one of the lower-porosity designs tested in the field showed no significant snow deposition within the bottom gap region beneath the fence. Thus, a major outcome of this study is to recommend using plastic snow fences with a porosity of 30%. It is expected that this lower-porosity design will continue to work well for even more severe snow events or for successive snow events occurring during the same winter. The approach advocated in the present study allowed making general recommendations for optimizing the design of lower-porosity plastic snow fences. This approach can be extended to improve the design of other types of snow fences. Some preliminary work for living snow fences is also discussed. Another major contribution of this study is to propose, develop protocols and test a novel technique based on close range photogrammetry (CRP) to quantify the snow deposits trapped snow fences. As image data can be acquired continuously, the time evolution of the volume of snow retained by a snow fence during a storm or during a whole winter season can, in principle, be obtained. Moreover, CRP is a non-intrusive method that eliminates the need to perform man-made measurements during the storms, which are difficult and sometimes dangerous to perform. Presently, there is lots of empiricism in the design of snow fences due to lack of data on fence storage capacity on how snow deposits change with the fence design and snow storm characteristics and in the estimation of the main parameters used by the state DOTs to design snow fences at a given site. The availability of such information from CRP measurements should provide critical data for the evaluation of the performance of a certain snow fence design that is tested by the IDOT. As part of the present study, the novel CRP method is tested at several sites. The present study also discusses some attempts and preliminary work to determine the snow relocation coefficient which is one of the main variables that has to be estimated by IDOT engineers when using the standard snow fence design software (Snow Drift Profiler, Tabler, 2006). Our analysis showed that standard empirical formulas did not produce reasonable values when applied at the Iowa test sites monitored as part of the present study and that simple methods to estimate this variable are not reliable. The present study makes recommendations for the development of a new methodology based on Large Scale Particle Image Velocimetry that can directly measure the snow drift fluxes and the amount of snow relocated by the fence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variable advisory speed limit (VASL) systems could be effective at both urban and rural work zones, at both uncongested and congested sites. At uncongested urban work zones, the average speeds with VASL were lower than without VASL. But the standard deviation of speeds with VASL was higher. The increase in standard deviation may be due to the advisory nature of VASL. The speed limit compliance with VASL was about eight times greater than without VASL. At the congested sites, the VASL were effective in making drivers slow down gradually as they approached the work zone, reducing any sudden changes in speeds. Mobility-wise the use of VASL resulted in a decrease in average queue length, throughput, number of stops, and an increase in travel time. Several surrogate safety measures also demonstrated the benefits of VASL in congested work zones. VASL deployments in rural work zones resulted in reductions in mean speed, speed variance, and 85th percentile speeds downstream of the VASL sign. The study makes the following recommendations based on the case studies investigated: 1. The use of VASL is recommended for uncongested work zones to achieve better speed compliance and lower speeds. Greater enforcement of regulatory speed limits could help to decrease the standard deviation in speeds; 2. The use of VASL to complement the static speed limits in rural work zones is beneficial even if the VASL is only used to display the static speed limits. It leads to safer traffic conditions by encouraging traffic to slow down gradually and by reminding traffic of the reduced speed limit. A well-designed VASL algorithm, like the P5 algorithm developed in this study, can significantly improve the mobility and safety conditions in congested work zones. The use of simulation is recommended for optimizing the VASL algorithms before field deployment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this research is to determine whether the nationally calibrated performance models used in the Mechanistic-Empirical Pavement Design Guide (MEPDG) provide a reasonable prediction of actual field performance, and if the desired accuracy or correspondence exists between predicted and monitored performance for Iowa conditions. A comprehensive literature review was conducted to identify the MEPDG input parameters and the MEPDG verification/calibration process. Sensitivities of MEPDG input parameters to predictions were studied using different versions of the MEPDG software. Based on literature review and sensitivity analysis, a detailed verification procedure was developed. A total of sixteen different types of pavement sections across Iowa, not used for national calibration in NCHRP 1-47A, were selected. A database of MEPDG inputs and the actual pavement performance measures for the selected pavement sites were prepared for verification. The accuracy of the MEPDG performance models for Iowa conditions was statistically evaluated. The verification testing showed promising results in terms of MEPDG’s performance prediction accuracy for Iowa conditions. Recalibrating the MEPDG performance models for Iowa conditions is recommended to improve the accuracy of predictions. ****************** Large File**************************