77 resultados para Deck carriage
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The Iowa Method for bridge deck overlays has been very successful in Iowa since its adoption in the 1970s. This method involves removal of deteriorated portions of a bridge deck followed by placement of a layer of den (Type O) Portland Cement Concrete (PCC). The challenge encountered with this type of bridge deck overlay is that the PCC must be mixed on-site, brought to the placement area and placed with specialized equipment. This adds considerably to the cost and limits contractor selection. A previous study (TR-427) showed that a dense PCC with high-range water reducers could successfully be used for bridge deck overlays using conventional equipment and methods. This current study evaluated the use of high performance PCC in place of a dense PCC for work on county bridges. High performance PCC uses fly ash and slag to replace some of the cement in the mix. This results in a workable PCC mix that cures to form a very low permeability overlay.
Resumo:
Iowa has the same problem that confronts most states in the United States: many bridges constructed more than 20 years ago either have deteriorated to the point that they are inadequate for original design loads or have been rendered inadequate by changes in design/maintenance standards or design loads. Inadequate bridges require either strengthening or posting for reduced loads. A sizeable number of single span, composite concrete deck - steel I beam bridges in Iowa currently cannot be rated to carry today's design loads. Various methods for strengthening the unsafe bridges have been proposed and some methods have been tried. No method appears to be as economical and promising as strengthening by post-tensioning of the steel beams. At the time this research study was begun, the feasibility of posttensioning existing composite bridges was unknown. As one would expect, the design of a bridge-strengthening scheme utilizing post-tensioning is quite complex. The design involves composite construction stressed in an abnormal manner (possible tension in the deck slab), consideration of different sizes of exterior and interior beams, cover-plated beams already designed for maximum moment at midspan and at plate cut-off points, complex live load distribution, and distribution of post-tensioningforces and moments among the bridge beams. Although information is available on many of these topics, there is miminal information on several of them and no information available on the total design problem. This study, therefore, is an effort to gather some of the missing information, primarily through testing a half-size bridge model and thus determining the feasibility of strengthening composite bridges by post-tensioning. Based on the results of this study, the authors anticipate that a second phase of the study will be undertaken and directed toward strengthening of one or more prototype bridges in Iowa.
Resumo:
The primary objective of this research was to demonstrate the benefits of NDT technologies for effectively detecting and characterizing deterioration in bridge decks. In particular, the objectives were to demonstrate the capabilities of ground-penetrating radar (GPR) and impact echo (IE), and to evaluate and describe the condition of nine bridge decks proposed by Iowa DOT. The first part of the report provides a detailed review of the most important deterioration processes in concrete decks, followed by a discussion of the five NDT technologies utilized in this project. In addition to GPR and IE methods, three other technologies were utilized, namely: half-cell (HC) potential, electrical resistivity (ER), and ultrasonic surface waves (USW) method. The review includes a description of the principles of operation, field implementation, data analysis, and interpretation; information regarding their advantages and limitations in bridge deck evaluations and condition monitoring are also implicitly provided.. The second part of the report provides descriptions and bridge deck evaluation results from the nine bridges. The results of the NDT surveys are described in terms of condition assessment maps and are compared with the observations obtained from the recovered cores or conducted bridge deck rehabilitation. Results from this study confirm that the used technologies can provide detailed and accurate information about a certain type of deterioration, electrochemical environment, or defect. However, they also show that a comprehensive condition assessment of bridge decks can be achieved only through a complementary use of multiple technologies at this stage,. Recommendations are provided for the optimum implementation of NDT technologies for the condition assessment and monitoring of bridge decks.
Resumo:
Abstract: As a part of an innovation project funded by the Federal Highway Administration (FHWA) Highways for LIFE program, a full-depth precast, ultra-high-performance concrete (UHPC) waffle deck panel and appropriate connections suitable for field implementation of waffle decks were developed. Following a successful full-scale validation test on a unit consisting of two panels with various types of connections under laboratory conditions, the waffle deck was installed successfully on a replacement bridge in Wapello County, Iowa. The subsequent load testing confirmed the desirable performance of the UHPC waffle deck bridge. Using the lessons from the completed project and outcomes from a series of simple and detailed finite element analyses of waffle decks, this report was developed to serve as a guide for broadening the design and installation of the UHPC waffle deck panel in new and existing bridges. Following an introduction to UHPC and waffle deck panels and a summary of completed work, this document presents information on waffle deck design, design of connections, redecking using waffle deck panels, and guidance on precast fabrication, construction, and installation of UHPC waffle deck panels.
Resumo:
The need to upgrade a large number of understrength and obsolete bridges in the U.S. has been well documented in the literature. Through several Iowa DOT projects, the concept of strengthening simple-span bridges by post-tensioning has been developed. The purpose of the project described in this report was to investigate the use of post-tensioning for strengthening continuous composite bridges. In a previous, successfully completed investigation, the feasibility of strengthening continuous, composite bridges by post-tensioning was demonstrated on a laboratory 1/3-scale-model bridge (3 spans: 41 ft 11 in. x 8 ft 8 in.). This project can thus be considered the implementation phase. The bridge selected for strengthening was in Pocahontas County near Fonda, Iowa, on County Road N28. With finite element analysis, a post-tensioning system was developed that required post-tensioning of the positive moment regions of both the interior and exterior beams. During the summer of 1988, the strengthening system was installed along with instrumentation to determine the bridge's response and behavior. Before and after post-tensioning, the bridge was subjected to truck loading (1 or 2 trucks at various predetermined critical locations) to determine the effectiveness of the strengthening system. The bridge, with the strengthening system in place, was inspected approximately every three months to determine any changes in its appearance or behavior. In 1989, approximately one year after the initial strengthening, the bridge was retested to identify any changes in its behavior. Post-tensioning forces were removed to reveal any losses over the one-year period. Post-tensioning was reapplied to the bridge, and the bridge was tested using the same loading program used in 1988. Except for at a few locations, stresses were reduced in the bridge the desired amount. At a few locations flexural stresses in the steel beams are still above 18 ksi, the allowable inventory stress for A7 steel. Although maximum stresses are above the inventory stress by about 2 ksi, they are about 5 ksi below the allowable operating stress; therefore, the bridge no longer needs to be load-posted.
Resumo:
The Phase I research, Iowa Department of Transportation (IDOT) Project HR-214, "Feasibility Study of Strengthening Existing Single Span Steel Beam Concrete Deck Bridges," verified that post-tensioning can be used to provide strengthening of the composite bridges under investigation. Phase II research, reported here, involved the strengthening of two full-scale prototype bridges - one a prototype of the model bridge tested during Phase I and the other larger and skewed. In addition to the field work, Phase II also involved a considerable amount of laboratory work. A literature search revealed that only minimal data existed on the angle-plus-bar shear connectors. Thus, several specimens utilizing angle-plus-bar, as well as channels, studs and high strength bolts as shear connectors were fabricated and tested. To obtain additional shear connector information, the bridge model of Phase I was sawed into four composite concrete slab and steel beam specimens. Two of the resulting specimens were tested with the original shear connection, while the other two specimens had additional shear connectors added before testing. Although orthotropic plate theory was shown in Phase I to predict vertical load distribution in bridge decks and to predict approximate distribution of post-tensioning for right-angle bridges, it was questioned whether the theory could also be used on skewed bridges. Thus, a small plexiglas model was constructed and used in vertical load distribution tests and post-tensioning force distribution tests for verification of the theory. Conclusions of this research are as follows: (1) The capacity of existing shear connectors must be checked as part of a bridge strengthening program. Determination of the concrete deck strength in advance of bridge strengthening is also recommended. (2) The ultimate capacity of angle-plus-bar shear connectors can be computed on the basis of a modified AASHTO channel connector formula and an angle-to-beam weld capacity check. (3) Existing shear connector capacity can be augmented by means of double-nut high strength bolt connectors. (4) Post-tensioning did not significantly affect truck load distribution for right angle or skewed bridges. (5) Approximate post-tensioning and truck load distribution for actual bridges can be predicted by orthotropic plate theory for vertical load; however, the agreement between actual distribution and theoretical distribution is not as close as that measured for the laboratory model in Phase I. (6) The right angle bridge exhibited considerable end restraint at what would be assumed to be simple support. The construction details at bridge abutments seem to be the reason for the restraint. (7) The skewed bridge exhibited more end restraint than the right angle bridge. Both skew effects and construction details at the abutments accounted for the restraint. (8) End restraint in the right angle and skewed bridges reduced tension strains in the steel bridge beams due to truck loading, but also reduced the compression strains caused by post-tensioning.
Resumo:
The unifying objective of Phases I and II of this study was to determine the feasibility of the post-tensioning strengthening method and to implement the technique on two composite bridges in Iowa. Following completion of these two phases, Phase III was undertaken and is documented in this report. The basic objectives of Phase III were further monitoring bridge behavior (both during and after post-tensioning) and developing a practical design methodology for designing the strengthening system under investigation. Specific objectives were: to develop strain and force transducers to facilitate the collection of field data; to investigate further the existence and effects of the end restraint on the post-tensioning process; to determine the amount of post-tensioning force loss that occurred during the time between the initial testing and the retesting of the existing bridges; to determine the significance of any temporary temperature-induced post-tensioning force change; and to develop a simplified design methodology that would incorporate various variables such as span length, angle-of-skew, beam spacing, and concrete strength. Experimental field results obtained during Phases II and III were compared to the theoretical results and to each other. Conclusions from this research are as follows: (1) Strengthening single-span composite bridges by post-tensioning is a viable, economical strengthening technique. (2) Behavior of both bridges was similar to the behavior observed from the bridges during field tests conducted under Phase II. (3) The strain transducers were very accurate at measuring mid-span strain. (4) The force transducers gave excellent results under laboratory conditions, but were found to be less effective when used in actual bridge tests. (5) Loss of post-tensioning force due to temperature effects in any particular steel beam post-tensioning tendon system were found to be small. (6) Loss of post-tensioning force over a two-year period was minimal. (7) Significant end restraint was measured in both bridges, caused primarily by reinforcing steel being continuous from the deck into the abutments. This end restraint reduced the effectiveness of the post-tensioning but also reduced midspan strains due to truck loadings. (8) The SAP IV finite element model is capable of accurately modeling the behavior of a post-tensioned bridge, if guardrails and end restraints are included in the model. (9) Post-tensioning distribution should be separated into distributions for the axial force and moment components of an eccentric post-tensioning force. (10) Skews of 45 deg or less have a minor influence on post-tensioning distribution. (11) For typical Iowa three-beam and four-beam composite bridges, simple regression-derived formulas for force and moment fractions can be used to estimate post-tensioning distribution at midspan. At other locations, a simple linear interpolation gives approximately correct results. (12) A simple analytical model can accurately estimate the flexural strength of an isolated post-tensioned composite beam.
Resumo:
The need to upgrade understrength bridges in the United States has been well documented in the literature. The concept of strengthening steel stringer bridges in Iowa has been developed through several Iowa DOT projects. The objective of the project described in this report was to investigate the use of one such strengthening system on a three-span continuous steel stringer bridge in the field. In addition, a design methodology was developed to assist bridge engineers with designing a strengthening system to obtain the desired stress reductions. The bridge selected for strengthening was in Cerro Gordo County near Mason City, Iowa on County Road B65. The strengthening system was designed to remove overstresses that occurred when the bridge was subjected to Iowa legal loads. A two part strengthening system was used: post-tensioning the positive moment regions of all the stringers and superimposed trusses in the negative moment regions of the two exterior stringers at the two piers. The strengthening system was installed in the summers of 1992 and 1993. In the summer of 1993, the bridge was load tested before and after the strengthening system was activated. The load test results indicate that the strengthening system was effective in reducing the overstress in both the negative and positive regions of the stringers. The design methodology that was developed includes a procedure for determining the magnitude of post-tensioning and truss forces required to strengthen a given bridge. This method utilizes moment and force fractions to determine the distribution of strengthening axial forces and moments throughout the bridge. Finite element analysis and experimental results were used in the formulation and calibration of the methodology. A spreadsheet was developed to facilitate the calculation of these required strengthening forces.
Resumo:
The Iowa demonstration project to promote the rehabilitation of bridge deck concrete by rebonding delaminations with injected epoxy is a 150 ft x 150 ft high truss bridge on Iowa route No. 210 over Indian Creek near Maxwell in Story County (Service level D, AADT-730, Inventory Rating HS-16.9, Operating Rating HS-25). The objective of this study was to evaluate the effectiveness of repairing a delaminated bridge deck by epoxy injection, specifically a bridge deck with a delaminated portland cement concrete overlay. Observations noted during the project lead to the following conclusions: The delaminations rebonded with epoxy have remained solid through five years. The percentage of delamination has stayed essentially the same for both the epoxy injected and non-repaired areas. Epoxy injection appears to be a practical, cost effective alternative to other forms of deck rehabilitation when undertaken at the proper time. Cost effectiveness would reduce dramatically if delayed until breakouts have occurred. On the other hand it would be a slow, labor intensive process if undertaken too early when delaminations are small.
Resumo:
The Iowa Department of Transportation is responsible for maintaining approximately 3800 bridges throughout the State. Of these bridges approximately 3200 have concrete decks. The remaining bridges have been constructed or repaired with a Portland Cement (P. C.) concrete overlay. Surveys of the overlays have indicated a growing incidence of delaminations and surface distress. The need to replace or repair the overlay may be dictated by the amount of delamination in the deck. Additionally, the concrete bridges are periodically inspected and scheduled for the appropriate rehabilitation. Part of this analysis is an assessment of the amount of delamination present in the deck. The ability to accurately and economically identify delamination in overlays and bridge decks is necessary to cost-effectively evaluate and schedule bridge rehabilitation. There are two conventional methods currently being used to detect delaminations. One is ref erred to as a chain drag method. The other a electro-mechanical sounding method (delamtect). In the chain drag method, the concrete surface is struck using a heavy chain. The inspector then listens to the sound produced as the surface is struck. The delaminated areas produce a dull sound as compared to nondelaminated areas. This procedure has proved to be very time consuming, especially when a number of small areas of delamination are present. With the · electro-mechanical method, the judgement of the inspector has been eliminated. A· device with three basic components, a tapping device, a sonic receiver, and a system of signal interpretation has been developed. This· device is wheeled along the deck and the instrument receives and interprets the acoustic signals generated by the instrument which in turn are reflected through the concrete. A recently developed method of detecting delaminations is infrared thermography. This method of detection is based on the difference in surface temperature which exists between delaminated and nondelaminated concrete under certain atmospheric conditions. The temperature difference can reach 5°C on a very sunny day where dry pavement exists. If clouds are present, or the pavement is wet, then the temperature difference between the delaminated and nondelaminated concrete will not be as great and therefore more difficult to detect. Infrared thermography was used to detect delaminations in 17 concrete bridge decks, 2 P. C. concrete overlays, and 1 section of continuously reinforced concrete pavement (CRCP) in Iowa. Thermography was selected to assess the accuracy, dependability, and potential of the infrared thermographic technique.
Resumo:
Research funds were approved for the purchase of equipment designed to proportion and inject epoxy resins into delaminated areas of bridge decks. Through investigation and refining of this process, it was anticipated that a maintenance procedure would be developed to delay spalling of bridge decks by "gluing down" delaminated areas before spalling occurred.
Resumo:
The Iowa Department of Transportation used a high molecular weight methacrylate (HMWM) resin to seal a 3,340 ft. x 64 ft. bridge deck in October 1986. The sealing was necessary to prevent deicing salt brine from entering a substantial number of transverse cracks that coincided with the epoxy coated top steel and unprotected bottom steel. HMWM resin is a three component product composed of a monomer, a cumene hydroperoxide initiator and a cobalt naphthenate promoter. The HMWM was applied with a dual spray bar system and flat-fan nozzles. Initiated monomer delivered through one spray bar was mixed in the air with promoted monomer from the other spray bar. The application rate averaged 0.956 gallons per 100 square feet for the tined textured driving lanes. Dry sand was broadcast on the surface at an average coverage of 0.58 lbs. per square yard to maintain friction. Coring showed that the HMWM resin penetrated the cracks more than two inches deep. Testing of the treated deck yielded Friction Numbers averaging 33 with a treaded tire compared to 36 prior to treatment. An inspection soon after treatment found five leaky cracks in one of the 15 spans. One inspection during a steady rain showed no leakage, but leakage from numerous cracks occurred during a subsequent rain. A second HMWM application was made on two spans. Leakage through the double application occurred during a rain. Neither the single or double application were successful in preventing leakage through the cracks.
Resumo:
The objective of this research was to evaluate two experimental D.S. Brown, Type SL450 and one D.S. Brown, Type SL750 expansion assemblies to identify possible construction problems and to determine the long term performances. These joints were installed in Wapello County on Jefferson Street viaduct in Ottumwa, Iowa. Visual inspections were made yearly. There is an indication that there may be a slow leakage at all three joints. The joint assemblies have performed well.
Resumo:
The objective of this research was to evaluate two experimental Acme MSB neoprene expansion assemblies to identify possible construction problems and to determine the long term performance. These joints were installed in Black Hawk County on the curved bridge of ramp H from US 218 to I-380 in Waterloo, Iowa. Visual inspections were made yearly. There is slow leakage at one joint and indication that there is some slow leakage of both joints. The joint assemblies have performed well.
Resumo:
This project was to determine possible construction problems and evaluate the performance of experimental joint seals. Joints were installed in Woodbury County on US 20 over the Missouri River. ACME-Beta B-520 joints were used. Visual inspections were made yearly. Although the joints performed well for eight years, they deteriorated rapidly and have failed. It was concluded these joints did not perform satisfactorily.