7 resultados para Current Density Mapping Method

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This investigation was initiated to determine the causes of a rutting problem that occurred on Interstate 80 in Adair County. 1-80 from Iowa 25 to the Dallas County line was opened to traffic in November, 1960. The original pavement consisted of 4-1/2" of asphalt cement concrete over 12" of rolled stone base and 12" of granular subbase. A 5-1/2" overlay of asphalt cement concrete was placed in 1964. In 1970-1972, the roadway was resurfaced with 3" of asphalt cement concrete. In 1982, an asphalt cement concrete inlay, designed for a 10-year life, was placed in the eastbound lane. The mix designs for all courses met or exceeded all current criteria being used to formulate job mixes. Field construction reports indicate .that asphalt usage, densities, field voids and filler bitumen determinations were well within specification limits on a very consistent basis. Field laboratory reports indicate that laboratory voids for the base courses were within the prescribed limits for the base course and below the prescribed limits for the surface course. Instructional memorandums do indicate that extreme caution should be exercised when the voids are at or near the lower limits and traffic is not minimal. There is also a provision that provides for field voids controlling when there is a conflict between laboratory voids and field voids. It appears that contract documents do not adequately address the directions that must be taken when this conflict arises since it can readily be shown that laboratory voids must be in the very low or dangerous range if field voids are to be kept below the maximum limit under the current density specifications. A rut depth survey of January, 1983, identified little or no rutting on this section of roadway. Cross sections obtained in October, 1983, identified rutting which ranged from 0 to 0.9" with a general trend of the rutting to increase from a value of approximately 0.3" at MP 88 to a rut depth of 0.7" at MP 98. No areas of significant rutting were identified in the inside lane. Structural evaluation with the Road Rater indicated adequate structural capacity and also indicated that the longitudinal subdrains were functioning properly to provide adequate soil support values. Two pavement sections taken from the driving lane indicated very little distortion in the lower 7" base course. Essentially all of the distortion had occurred in the upper 2" base course and the 1..;1/2" surface course. Analysis of cores taken from this section of Interstate 80 indicated very little densification of either the surface or the upper or lower base courses. The asphalt cement content of both the Type B base courses and the Type A surface course were substantially higher than the intended asphalt cement content. The only explanation for this is that the salvaged material contained a greater percent of asphalt cement than initial extractions indicated. The penetration and viscosity of the blend of new asphalt cement and the asphalt cement recovered from the salvaged material were relatively close to that intended for this project. The 1983 ambient temperatures were extremely high from June 20 through September 10. The rutting is a result of a combination of adverse factors including, (1) high asphalt content, (2) the difference between laboratory and field voids, (3) lack of intermediate sized crushed particles, (4) high ambient temperatures. The high asphalt content in the 2" upper base course produced an asphalt concrete mix that did not exhibit satisfactory resistance to deformation from heavy loading. The majority of the rutting resulted from distortion of the 2" upper base lift. Heater planing is recommended as an interim corrective action. Further recommendation is to design for a 20-year alternative by removing 2-1/2" of material from the driving lane by milling and replacing with 2-1/2" of asphalt concrete with improved stability. This would be .followed by placing 1-1/2" of high quality resurfacing on the entire roadway. Other recommendations include improved density and stability requirements for asphalt concrete on high traffic roadways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photographic documentation of crashed vehicles at the scene can be used to improve triage of crash victims. A U.S. expert panel developed field triage rules to determine the likelihood of occupants sustaining serious injuries based on vehicle damage that would require transport to a trauma center (Sasser et al., 2011). The use of photographs for assessing vehicle damage and occupant compartment intrusion as it correlates to increased injury severity has been validated (Davidson et al., 2014). Providing trauma staff with crash scene photos remotely could assist them in predicting injuries. This would allow trauma care providers to assess the appropriate transport, as well as develop mental models of treatment options prior to patient arrival at the emergency department (ED). Crash-scene medical response has improved tremendously in the past 20-30 years. This is in part due to the increasing number of paramedics who now have advanced life support (ALS) training that allows independence in the field. However, while this advanced training provides a more streamlined field treatment protocol, it also means that paramedics focused on treating crash victims may not have time to communicate with trauma centers regarding crash injury mechanisms. As a result, trauma centers may not learn about severe trauma patients until just a few minutes before they arrive. The information transmitted by the TraumaHawk app allows interpretation of injury mechanisms from crash scene photos at the trauma center, providing clues about the type and severity of injury. With strategic crash scene photo documentation, trained trauma professionals can assess the severity and patterns of injury based on exterior crush and occupant intrusion. Intrusion increases the force experienced by vehicle occupants, which translates into a higher level of injury severity (Tencer et al., 2005; Assal et al., 2002; Mandell et al., 2010). First responders have the unique opportunity to assess the damaged vehicle at the crash scene, but often the mechanism of injury is limited or not even relayed to ED trauma staff. To integrate photographic and scene information, an app called TraumaHawk was created to capture images of crash vehicles and send them electronically to the trauma center. If efficiently implemented, it provides the potential advantage of increasing lead-time for preparation at the trauma center through the crash scene photos. Ideally, the result is better treatment outcomes for crash victims. The objective of this analysis was to examine if the extra lead-time granted by the TraumaHawk app could improve trauma team activation time over the current conventional communication method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research presented in this report provides the basis for the development of a new procedure to be used by the Iowa DOT and cities and counties in the state to deal with detours. Even though the project initially focused on investigating new tools to determine condition and compensation, the focus was shifted to traffic and the gas tax method to set the basis for the new procedure. It was concluded that the condition-based approach, even though accurate and consistent condition evaluations can be achieved, is not feasible or cost effective because of the current practices of data collection (two-year cycle) and also the logistics of the procedure (before and after determination). The gas tax method provides for a simple, easy to implement, and consistent approach to dealing with compensation for use of detours. It removes the subjectivity out of the current procedures and provides for a more realistic (traffic based) approach to the compensation determination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary objective of this research was to demonstrate the benefits of NDT technologies for effectively detecting and characterizing deterioration in bridge decks. In particular, the objectives were to demonstrate the capabilities of ground-penetrating radar (GPR) and impact echo (IE), and to evaluate and describe the condition of nine bridge decks proposed by Iowa DOT. The first part of the report provides a detailed review of the most important deterioration processes in concrete decks, followed by a discussion of the five NDT technologies utilized in this project. In addition to GPR and IE methods, three other technologies were utilized, namely: half-cell (HC) potential, electrical resistivity (ER), and ultrasonic surface waves (USW) method. The review includes a description of the principles of operation, field implementation, data analysis, and interpretation; information regarding their advantages and limitations in bridge deck evaluations and condition monitoring are also implicitly provided.. The second part of the report provides descriptions and bridge deck evaluation results from the nine bridges. The results of the NDT surveys are described in terms of condition assessment maps and are compared with the observations obtained from the recovered cores or conducted bridge deck rehabilitation. Results from this study confirm that the used technologies can provide detailed and accurate information about a certain type of deterioration, electrochemical environment, or defect. However, they also show that a comprehensive condition assessment of bridge decks can be achieved only through a complementary use of multiple technologies at this stage,. Recommendations are provided for the optimum implementation of NDT technologies for the condition assessment and monitoring of bridge decks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Longitudinal joint quality control/assurance is essential to the successful performance of asphalt pavements and it has received considerable amount of attention in recent years. The purpose of the study is to evaluate the level of compaction at the longitudinal joint and determine the effect of segregation on the longitudinal joint performance. Five paving projects with the use of traditional butt joint, infrared joint heater, edge restraint by milling and modified butt joint with the hot pinch longitudinal joint construction techniques were selected in this study. For each project, field density and permeability tests were made and cores from the pavement were obtained for in-lab permeability, air void and indirect tensile strength. Asphalt content and gradations were also obtained to determine the joint segregation. In general, this study finds that the minimum required joint density should be around 90.0% of the theoretical maximum density based on the AASHTO T166 method. The restrained-edge by milling and butt joint with the infrared heat treatment construction methods both create the joint density higher than this 90.0% limit. Traditional butt joint exhibits lower density and higher permeability than the criterion. In addition, all of the projects appear to have segregation at the longitudinal joint except for the edge-restraint by milling method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iowa state, county, and city engineering offices expend considerable effort monitoring the state’s approximately 25,000 bridges, most of which span small waterways. In fact, the need for monitoring is actually greater for bridges over small waterways because scour processes are exacerbated by the close proximity of abutments, piers, channel banks, approach embankments, and other local obstructions. The bridges are customarily inspected biennially by the county’s road department bridge inspectors. It is extremely time consuming and difficult to obtain consistent, reliable, and timely information on bridge-waterway conditions for so many bridges. Moreover, the current approaches to gather survey information is not uniform, complete, and quantitative. The methodology and associated software (DIGIMAP) developed through the present project enable a non-intrusive means to conduct fast, efficient, and accurate inspection of the waterways in the vicinity of the bridges and culverts using one technique. The technique combines algorithms image of registration and velocimetry using images acquired with conventional devices at the inspection site. The comparison of the current bridge inspection and monitoring methods with the DIGIMAP methodology enables to conclude that the new procedure assembles quantitative information on the waterway hydrodynamic and morphologic features with considerable reduced effort, time, and cost. It also improves the safety of the bridge and culvert inspections conducted during normal and extreme hydrologic events. The data and information are recorded in a digital format, enabling immediate and convenient tracking of the waterway changes over short or long time intervals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Velocity-density tests conducted in the laboratory involved small 4-inch diameter by 4.58-inch-long compacted soil cylinders made up of 3 differing soil types and for varying degrees of density and moisture content, the latter being varied well beyond optimum moisture values. Seventeen specimens were tested, 9 with velocity determinations made along two elements of the cylinder, 180 degrees apart, and 8 along three elements, 120 degrees apart. Seismic energy was developed by blows of a small tack hammer on a 5/8-inch diameter steel ball placed at the center of the top of the cylinder, with the detector placed successively at four points spaced 1/2-inch apart on the side of the specimen involving wave travel paths varying from 3.36 inches to 4.66 inches in length. Time intervals were measured using a model 217 micro-seismic timer in both laboratory and field measurements. Forty blows of the hammer were required for each velocity determination, which amounted to 80 blows on 9 laboratory specimens and 120 blows on the remaining 8 cylinders. Thirty-five field tests were made over the three selected soil types, all fine-grained, using a 2-foot seismic line with hammer-impact points at 6-inch intervals. The small tack hammer and 5/8-inch steel ball was, again, used to develop seismic wave energy. Generally, the densities obtained from the velocity measurements were lower than those measured in the conventional field testing. Conclusions were reached that: (1) the method does not appear to be usable for measurement of density of essentially fine-grained soils when the moisture content greatly exceeds the optimum for compaction, and (2) due to a gradual reduction in velocity upon aging, apparently because of gradual absorption of pore water into the expandable interlayer region of the clay, the seismic test should be conducted immediately after soil compaction to obtain a meaningful velocity value.