15 resultados para Construction of the Reality
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Report on a review of the funding for construction of the Lewis and Clark Interpretive Center at Lewis and Clark State Park in Monona County for the period February 25, 1999 through December 31, 2008
Resumo:
The Rock Island Centennial Bridge spanning the Mississippi River between Rock Island, Illinois and Davenport, Iowa was opened to traffic on July 12, 1940. It is a thoroughly modern, four-lane highway bridge, adequate in every respect for present day high speed passenger and transport traffic. The structure is ideally situated to provide rapid transit between the business districts of Rock Island and Davenport and serves not only the local or shuttle traffic in the Tri-City Area, but also heavy through motor travel on U.S. Highways 67 and 150. The Centennial Bridge is notable in several respects. The main spans are box girder rib tied arches, a type rather unusual in America and permitting simplicity in design with pleasing appearance. The Centennial Bridge is the only bridge across the Mississippi providing for four lanes of traffic with separation of traffic in each direction. It is a toll bridge operating alongside a free bridge and has the lowest rates of toll of any toll bridge on the Mississippi River. It was financed entirely by the City of Rock Island with no obligation on the taxpayers; there was no federal or state participation in the financing. But perhaps the most outstanding feature of the new bridge is its great need. A few remarks on the communities served by the new structure, the services rendered, and some statistics on cross-river traffic in the Tri-City Area will emphasize the reasons for constructing the Centennial Bridge.
Resumo:
Reconstruction of bridge approach slabs which have failed due to a loss of support from embankment fill consolidation or erosion can be particularly challenging in urban areas where lane closures must be minimized. Precast prestressed concrete pavement is a potential solution for rapid bridge approach slab reconstruction which uses prefabricated pavement panels that can be installed and opened to traffic quickly. To evaluate this solution, the Iowa Department of Transportation constructed a precast prestressed approach slab demonstration project on Highway 60 near Sheldon, Iowa in August/September 2006. Two approach slabs at either end of a new bridge were constructed using precast prestressed concrete panels. This report documents the successful development, design, and construction of the precast prestressed concrete bridge approach slabs on Highway 60. The report discusses the challenges and issues that were faced during the project and presents recommendations for future implementation of this innovative construction technique.
Resumo:
The purpose of this investigation was to evaluate the Compensatory Wetland Mitigation Program at the Iowa Department of Transportation (DOT) in terms of regulatory compliance. Specific objectives included: 1) Determining if study sites meet the definition of a jurisdictional wetland. 2) Determining the degree of compliance with requirements specified in Clean Water Act Section 404 permits. A total of 24 study sites, in four age classes were randomly selected from over 80 sites currently managed by the Iowa DOT. Wetland boundaries were delineated in the field and mitigation compliance was determined by comparing the delineated wetland acreage at each study site to the total wetland acreage requirements specified in individual CWA Section 404 permits. Of the 24 sites evaluated in this study, 58 percent meet or exceed Section 404 permit requirements. Net gain ranged from 0.19 acre to 27.2 acres. Net loss ranged from 0.2 acre to 14.6 acres. The Denver Bypass 1 site was the worst performer, with zero acres of wetland present on the site and the Akron Wetland Mitigation Site was the best performer with slightly more than 27 acres over the permit requirement. Five of the 10 under-performing sites are more than five years post construction, two are five years post construction, one is three years post construction and the remaining two are one year post construction. Of the sites that meet or exceed permit requirements, approximately 93 percent are five years or less post construction and approximately 43 percent are only one year old. Only one of the 14 successful sites is more than five years old. Using Section 404 permit acreage requirements as the criteria for measuring success, 58 percent of the wetland mitigation sites investigated as part of this study are successful. Using net gain/loss as the measure of success, the Compensatory Wetland Mitigation Program has been successful in creating/restoring nearly 44 acres of wetland over what was required by permits.
Resumo:
The purpose of this investigation was to evaluate the Compensatory Wetland Mitigation Program at the Iowa Department of Transportation (DOT) in terms of regulatory compliance. Specific objectives included: 1) Determining if study sites meet the definition of a jurisdictional wetland. 2) Determining the degree of compliance with requirements specified in Clean Water Act Section 404 permits. A total of 24 study sites, in four age classes were randomly selected from over 80 sites currently managed by the Iowa DOT. Wetland boundaries were delineated in the field and mitigation compliance was determined by comparing the delineated wetland acreage at each study site to the total wetland acreage requirements specified in individual CWA Section 404 permits. Of the 24 sites evaluated in this study, 58 percent meet or exceed Section 404 permit requirements. Net gain ranged from 0.19 acre to 27.2 acres. Net loss ranged from 0.2 acre to 14.6 acres. The Denver Bypass 1 site was the worst performer, with zero acres of wetland present on the site and the Akron Wetland Mitigation Site was the best performer with slightly more than 27 acres over the permit requirement. Five of the 10 under-performing sites are more than five years post construction, two are five years post construction, one is three years post construction and the remaining two are one year post construction. Of the sites that meet or exceed permit requirements, approximately 93 percent are five years or less post construction and approximately 43 percent are only one year old. Only one of the 14 successful sites is more than five years old. Using Section 404 permit acreage requirements as the criteria for measuring success, 58 percent of the wetland mitigation sites investigated as part of this study are successful. Using net gain/loss as the measure of success, the Compensatory Wetland Mitigation Program has been successful in creating/restoring nearly 44 acres of wetland over what was required by permits.
Resumo:
As a result of the construction of the Saylorville Dam and Reservoir on the Des Moines River, six highway bridges crossing the river were scheduled for removal. One of these, an old pinconnected high-truss single-lane bridge, was selected for a testing program which included ultimate load tests. The purpose of the ultimate load tests, which are summarized in this report, was to relate design and rating procedures presently used in bridge design to the field behavior of this type of truss bridge. The ultimate load tests consisted of ultimate load testing of one span of the bridge, of two I-shaped floorbeams, and of two panels of the timber deck. The theoretical capacity of each of these components is compared with the results from the field tests.
Resumo:
Review of Alternative Distribution Methodologies for the Street Construction Fund of the Cities
Resumo:
Bridge approach settlement and the formation of the bump is a common problem in Iowa that draws upon considerable resources for maintenance and creates a negative perception in the minds of transportation users. This research study was undertaken to investigate bridge approach problems and develop new concepts for design, construction, and maintenance that will reduce this costly problem. As a result of the research described in this report, the following changes are suggested for implementation on a pilot test basis: • Use porous backfill behind the abutment and/or geocomposite drainage systems to improve drainage capacity and reduce erosion around the abutment. • On a pilot basis, connect the approach slab to the bridge abutment. Change the expansion joint at the bridge to a construction joint of 2 inch. Use a more effective joint sealing system at the CF joint. Change the abutment wall rebar from #5 to #7 for non-integral abutments. • For bridges with soft foundation or embankment soils, implement practices of better compaction, preloading, ground improvement, soil removal and replacement, or soil reinforcement that reduce time-dependent post construction settlements.
Resumo:
Bridge approach settlement and the formation of the bump is a common problem in Iowa that draws upon considerable resources for maintenance and creates a negative perception in the minds of transportation users. This research study was undertaken to investigate bridge approach problems and develop new concepts for design, construction, and maintenance that will reduce this costly problem. As a result of the research described in this report, the following changes are suggested for implementation on a pilot test basis: • Use porous backfill behind the abutment and/or geocomposite drainage systems to improve drainage capacity and reduce erosion around the abutment. • On a pilot basis, connect the approach slab to the bridge abutment. Change the expansion joint at the bridge to a construction joint of 2 inch. Use a more effective joint sealing system at the CF joint. Change the abutment wall rebar from #5 to #7 for non-integral abutments. • For bridges with soft foundation or embankment soils, implement practices of better compaction, preloading, ground improvement, soil removal and replacement, or soil reinforcement that reduce time-dependent post construction settlements.
Resumo:
At the heart of all concrete pavement projects is the concrete itself. This manual is intended as both a training tool and a reference to help concrete paving engineers, quality control personnel, specifiers, contractors, suppliers, technicians, and tradespeople bridge the gap between recent research and practice regarding optimizing the performance of concrete for pavements. Specifically, it will help readers do the following:
Resumo:
This document summarizes the discussion and findings of a workshop on intelligent technologies for earthwork construction held in West Des Moines, Iowa, on April 14–16, 2009. This meeting follows a similar workshop conducted in 2008. The objective of the meeting was to provide a focused discussion on identifying research and implementation needs/strategies to advance intelligent compaction and automated machine guidance technologies. Technical presentations, interactive working breakout sessions, and a panel discussion comprised the workshop. About 100 attendees representing state departments of transportation, Federal Highway Administration, contractors, equipment manufacturers, and researchers participated in the workshop.
Resumo:
The need to construct bridges that last longer, are less expensive, and take less time to build has increased. The importance of accelerated bridge construction (ABC) technologies has been realized by the Federal Highway Administration (FHWA) and the Iowa Department of Transportation (DOT) Office of Bridges and Structures. This project is another in a series of ABC bridge projects undertaken by the Iowa DOT. Buena Vista County, Iowa, with the assistance of the Iowa Department of Transportation (DOT) and the Bridge Engineering Center (BEC) at Iowa State University, constructed a two-lane single-span precast box girder bridge, using rapid construction techniques. The design involved the use of precast, pretensioned components for the bridge superstructure, substructure, and backwalls. This application and demonstration represents an important step in the development and advancement of these techniques in Iowa as well as nationwide. Prior funding for the design and construction of this bridge (including materials) was obtained through the FHWA Innovative Bridge Research and Deployment (IBRD) Program. The Iowa Highway Research Board (IHRB) provided additional funding to test and evaluate the bridge. This project directly addresses the IBRD goal of demonstrating (and documenting) the effectiveness of innovative materials and construction techniques for the construction of new bridge structures. Evaluation of performance was formulated through comparisons with design assumptions and recognized codes and standards including American Association of State Highway and Transportation Officials (AASHTO) specifications.
Resumo:
The purpose of this study is to provide recommendations relative to the location and construction needs for highway maintenance facilities within the state of Iowa. These recommendations were to be developed with consideration being given to the public's expectations and priorities for highway maintenance services. As a part of the study effort, a review was made of the methods used by other states to deliver highway maintenance services. To accomplish the study, Wilbur Smith Associates undertook a series of tasks. These efforts included gathering of data and information to characterize the various maintenance programs and the delivery of maintenance and operations services by the Department. We researched the delivery of highway maintenance services in other states. Interviews with Iowa DOT maintenance personnel were accomplished. A schedule of public hearings was developed and ten hearings were held. All the information was integrated and various analyses were made. From these analyses we drew conclusions and developed recommendations.
Resumo:
The objectives of this workshop were to update the strategies identified during the 2008 workshop; provide a collaborative exchange of ideas and experiences; share research results; increase participants' knowledge; develop research, education, and implementation initiatives for intelligent compaction (IC) and automated machine guidance (AMG) technologies; and develop strategies to move forward. The 2 1/2 day workshop was organized as follows: Day 1: Review of 2008 workshop proceedings, technical presentations on IC and AMG technologies, and participating state department of transportation (DOT) briefings. Day 2: Industry/equipment manufacturer presentations and breakout interactive sessions on three topic areas. Day 3: Breakout session summary reporting and panel discussion involving state DOT, contractor, and industry representatives. The results of the breakout sessions on day 2 were analyzed to identify the priorities for advancement in each of the three topic areas. Key issues for each topic were prioritized by reviewing the recorder's notes in detail, finding common topics among sessions, and summarizing the participant votes.
Resumo:
Use of bridge deck overlays is important in maximizing bridge service life. Overlays can replace the deteriorated part of the deck, thus extending the bridge life. Even though overlay construction avoids the construction of a whole new bridge deck, construction still takes significant time in re-opening the bridge to traffic. Current processes and practices are time-consuming and multiple opportunities may exist to reduce overall construction time by modifying construction requirements and/or materials utilized. Reducing the construction time could have an effect on reducing the socioeconomic costs associated with bridge deck rehabilitation and the inconvenience caused to travelers. This work included three major tasks with literature review, field investigation, and laboratory testing. Overlay concrete mix used for present construction takes long curing hours and therefore an investigation was carried out to find fast-curing concrete mixes that could reduce construction time. Several fast-cuing concrete mixes were found and suggested for further evaluation. An on-going overlay construction project was observed and documented. Through these observations, several opportunities were suggested where small modifications in the process could lead to significant time savings. With current standards of the removal depth of substrate concrete in Iowa, it takes long hours for the removal process. Four different laboratory tests were performed with different loading conditions to determine the necessary substrate concrete removal depth for a proper bond between the substrate concrete and the new overlay concrete. Several parameters, such as failure load, bond stress, and stiffness, were compared for four different concrete removal depths. Through the results and observations of this investigation several conclusions were made which could reduce bridge deck overlay construction time.