48 resultados para Benfica Lab
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
A new, state-of-the-art mobile lab has recently been launched from the PCC Center at Iowa State University to bring high-tech concrete materials and concrete pavement testing capabilities to the field. The Mobile Concrete Research Lab has been custom built and fully outfitted with equipment capable of performing a comprehensive suite of tests.
Resumo:
Graph produced by Office of Drug Control Policy showing the tracking of Meth Labs in Iowa from 2008-2010.
Resumo:
Concrete curing is closely related to cement hydration, microstructure development, and concrete performance. Application of a liquid membrane-forming curing compound is among the most widely used curing methods for concrete pavements and bridge decks. Curing compounds are economical, easy to apply, and maintenance free. However, limited research has been done to investigate the effectiveness of different curing compounds and their application technologies. No reliable standard testing method is available to evaluate the effectiveness of curing, especially of the field concrete curing. The present research investigates the effects of curing compound materials and application technologies on concrete properties, especially on the properties of surface concrete. This report presents a literature review of curing technology, with an emphasis on curing compounds, and the experimental results from the first part of this research—lab investigation. In the lab investigation, three curing compounds were selected and applied to mortar specimens at three different times after casting. Two application methods, single- and double-layer applications, were employed. Moisture content, conductivity, sorptivity, and degree of hydration were measured at different depths of the specimens. Flexural and compressive strength of the specimens were also tested. Statistical analysis was conducted to examine the relationships between these material properties. The research results indicate that application of a curing compound significantly increased moisture content and degree of cement hydration and reduced sorptivity of the near-surface-area concrete. For given concrete materials and mix proportions, optimal application time of curing compounds depended primarily upon the weather condition. If a sufficient amount of a high-efficiency-index curing compound was uniformly applied, no double-layer application was necessary. Among all test methods applied, the sorptivity test is the most sensitive one to provide good indication for the subtle changes in microstructure of the near-surface-area concrete caused by different curing materials and application methods. Sorptivity measurement has a close relation with moisture content and degree of hydration. The research results have established a baseline for and provided insight into the further development of testing procedures for evaluation of curing compounds in field. Recommendations are provided for further field study.
Resumo:
In 1993, Iowa Workforce Development (then the Department of Employment Services) conducted a survey to determine if there was a gender gap in wages paid. The results of that survey indicated that women were paid 68 cents per dollar paid to males. We felt a need to determine if this relationship of wages paid to each gender has changed since the 1993 study. In 1999, the Commission on the Status of Women requested that Iowa Workforce Development conduct research to update the 1993 information. A survey, cosponsored by the Commission on the Status of Women and Iowa Workforce Development, was conducted in 1999. The results of the survey showed that women earned 73 percent of what men earned when both jobs were considered. (The survey asked respondents to provide information on a primary job and a secondary job.) The ratio for the primary job was 72 percent, while the ratio for the secondary job was 85 percent. Additional survey results detail the types of jobs respondents had, the types of companies for which they worked and the education and experience levels. All of these characteristics can contribute to these ratios. While the large influx of women into the labor force may be over, it is still important to look at such information to determine if future action is needed. We present these results with that goal in mind. We are indebted to those Iowans, female and male, who voluntarily completed the survey. This study was completed under the general direction of Judy Erickson. The report was written by Shazada Khan, Teresa Wageman, Ann Wagner, and Yvonne Younes with administrative and technical assistance from Michael Blank, Margaret Lee and Gary Wilson. The Iowa State University Statistical Lab provided sampling advice, data entry and coding and data analysis.
Resumo:
Severe environmental conditions, coupled with the routine use of deicing chemicals and increasing traffic volume, tend to place extreme demands on portland cement concrete (PCC) pavements. In most instances, engineers have been able to specify and build PCC pavements that met these challenges. However, there have also been reports of premature deterioration that could not be specifically attributed to a single cause. Modern concrete mixtures have evolved to become very complex chemical systems. The complexity can be attributed to both the number of ingredients used in any given mixture and the various types and sources of the ingredients supplied to any given project. Local environmental conditions can also influence the outcome of paving projects. This research project investigated important variables that impact the homogeneity and rheology of concrete mixtures. The project consisted of a field study and a laboratory study. The field study collected information from six different projects in Iowa. The information that was collected during the field study documented cementitious material properties, plastic concrete properties, and hardened concrete properties. The laboratory study was used to develop baseline mixture variability information for the field study. It also investigated plastic concrete properties using various new devices to evaluate rheology and mixing efficiency. In addition, the lab study evaluated a strategy for the optimization of mortar and concrete mixtures containing supplementary cementitious materials. The results of the field studies indicated that the quality management concrete (QMC) mixtures being placed in the state generally exhibited good uniformity and good to excellent workability. Hardened concrete properties (compressive strength and hardened air content) were also satisfactory. The uniformity of the raw cementitious materials that were used on the projects could not be monitored as closely as was desired by the investigators; however, the information that was gathered indicated that the bulk chemical composition of most materials streams was reasonably uniform. Specific minerals phases in the cementitious materials were less uniform than the bulk chemical composition. The results of the laboratory study indicated that ternary mixtures show significant promise for improving the performance of concrete mixtures. The lab study also verified the results from prior projects that have indicated that bassanite is typically the major sulfate phase that is present in Iowa cements. This causes the cements to exhibit premature stiffening problems (false set) in laboratory testing. Fly ash helps to reduce the impact of premature stiffening because it behaves like a low-range water reducer in most instances. The premature stiffening problem can also be alleviated by increasing the water–cement ratio of the mixture and providing a remix cycle for the mixture.
Resumo:
Various test methods exist for measuring heat of cement hydration; however, most current methods require expensive equipment, complex testing procedures, and/or extensive time, thus not being suitable for field application. The objectives of this research are to identify, develop, and evaluate a standard test procedure for characterization and quality control of pavement concrete mixtures using a calorimetry technique. This research project has three phases. Phase I was designed to identify the user needs, including performance requirements and precision and bias limits, and to synthesize existing test methods for monitoring the heat of hydration, including device types, configurations, test procedures, measurements, advantages, disadvantages, applications, and accuracy. Phase II was designed to conduct experimental work to evaluate the calorimetry equipment recommended from the Phase I study and to develop a standard test procedure for using the equipment and interpreting the test results. Phase II also includes the development of models and computer programs for prediction of concrete pavement performance based on the characteristics of heat evolution curves. Phase III was designed to study for further development of a much simpler, inexpensive calorimeter for field concrete. In this report, the results from the Phase I study are presented, the plan for the Phase II study is described, and the recommendations for Phase III study are outlined. Phase I has been completed through three major activities: (1) collecting input and advice from the members of the project Technical Working Group (TWG), (2) conducting a literature survey, and (3) performing trials at the CP Tech Center’s research lab. The research results indicate that in addition to predicting maturity/strength, concrete heat evolution test results can also be used for (1) forecasting concrete setting time, (2) specifying curing period, (3) estimating risk of thermal cracking, (4) assessing pavement sawing/finishing time, (5) characterizing cement features, (6) identifying incompatibility of cementitious materials, (7) verifying concrete mix proportions, and (8) selecting materials and/or mix designs for given environmental conditions. Besides concrete materials and mix proportions, the configuration of the calorimeter device, sample size, mixing procedure, and testing environment (temperature) also have significant influences on features of concrete heat evolution process. The research team has found that although various calorimeter tests have been conducted for assorted purposes and the potential uses of calorimeter tests are clear, there is no consensus on how to utilize the heat evolution curves to characterize concrete materials and how to effectively relate the characteristics of heat evolution curves to concrete pavement performance. The goal of the Phase II study is to close these gaps.
Resumo:
Density is an important component of hot-mix asphalt (HMA) pavement quality and long-term performance. Insufficient density of an in-place HMA pavement is the most frequently cited construction-related performance problem. This study evaluated the use of electromagnetic gauges to nondestructively determine densities. Field and laboratory measurements were taken with two electromagnetic gauges—a PaveTracker and a Pavement Quality Indicator (PQI). Test data were collected in the field during and after paving operations and also in a laboratory on field mixes compacted in the lab. This study revealed that several mix- and project-specific factors affect electromagnetic gauge readings. Consequently, the implementation of these gauges will likely need to be done utilizing a test strip on a project- and mix-specific basis to appropriately identify an adjustment factor for the specific electromagnetic gauge being used for quality control and quality assurance (QC/QA) testing. The substantial reduction in testing time that results from employing electromagnetic gauges rather than coring makes it possible for more readings to be used in the QC/QA process with real-time information without increasing the testing costs.
Validation of the New Mix Design Process for Cold In-Place Rehabilitation Using Foamed Asphalt, 2007
Resumo:
Asphalt pavement recycling has grown dramatically over the last few years as a viable technology to rehabilitate existing asphalt pavements. Iowa's current Cold In-place Recycling (CIR) practice utilizes a generic recipe specification to define the characteristics of the CIR mixture. As CIR continues to evolve, the desire to place CIR mixture with specific engineering properties requires the use of a mix design process. A new mix design procedure was developed for Cold In-place Recycling using foamed asphalt (CIR-foam) in consideration of its predicted field performance. The new laboratory mix design process was validated against various Reclaimed Asphalt Pavement (RAP) materials to determine its consistency over a wide range of RAP materials available throughout Iowa. The performance tests, which include dynamic modulus test, dynamic creep test and raveling test, were conducted to evaluate the consistency of a new CIR-foam mix design process to ensure reliable mixture performance over a wide range of traffic and climatic conditions. The “lab designed” CIR will allow the pavement designer to take the properties of the CIR into account when determining the overlay thickness.
Resumo:
Methamphetamine (meth) drug labs are not a new hazard to Iowa. In 2004, federal, state and local authorities seized more than 1,400 Iowa labs. These labs are discovered in houses, apartments, motel rooms, motor vehicles, and even an occasional combine. A dramatic decrease in the number of meth labs occurred in 2005 when a law restricting the purchase of pseudoephedrine was implemented. Although the number of meth labs has decreased, they continue to exist. Since there is currently no official federal guidance or regulations on how to clean up a former meth lab, the Iowa Department of Public Health, Division of Environmental Health, has created these basic guidelines to assist public health officials, property owners and the general public in cleaning up former meth lab properties.
Resumo:
Highlights: * Iowa’s Unemployment Insurance Tax Bureau is getting a new online filing system, called My Iowa UI.............pg. 2 * Disability Navigator Jade Hunt sent us this success story..........................pg. 2 * Frank Nucaro attended Re-Employment Services (RES) training in December and the Skills Development lab in January...........................................pg. 2
Resumo:
Pavement marking technology is a continually evolving subject. There are numerous types of materials used in the field today, including (but not limited to) paint, epoxy, tape, and thermoplastic. Each material has its own set of unique characteristics related to durability, retro reflectivity, installation cost, and life-cycle cost. The Iowa Highway Research Board was interested in investigating the possibility of developing an ongoing program to evaluate the various products used in pavement marking. This potential program would maintain a database of performance and cost information to assist state and local agencies in determining which materials and placement methods are most appropriate for their use. The Center for Transportation Research and Education at Iowa State University has completed Phase I of this research: to identify the current practice and experiences from around the United States to recommend a further course of action for the State of Iowa. There has been a significant amount of research completed in the last several years. Research from Michigan, Pennsylvania, South Dakota, Ohio, and Alaska all had some common findings: white markings are more retro reflective than yellow markings; paint is by-and-large the least expensive material; paint tends to degrade faster than other materials; thermoplastic and tapes had higher retro reflective characteristics. Perhaps the most significant program going on in the area of pavement markings is the National Transportation Product Evaluation Program (NTPEP). This is an ongoing research program jointly conducted by the American Association of State Highway and Transportation Officials and its member states. Field and lab tests on numerous types of pavement marking materials are being conducted at sites representing four climatological areas. These results are published periodically for use by any jurisdiction interested in pavement marking materials performance.At this time, it is recommended that the State of Iowa not embark on a test deck evaluation program. Instead, close attention should be paid to the ongoing evaluations of the NTPEP program. Materials that fare well on the NTPEP test de cks should be considered for further field studies in Iowa.
Resumo:
This law is intended to reduce the number of hazardous methamphetamine labs in Iowa, by controlling meth cooks’ access to the key meth-making ingredient: pseudoephedrine. In 2004, Iowa law enforcement agencies responded to a record 1,472 meth lab incidents. Below, please find links to: Senate File 169 (Iowa’s pseudoephedrine control law); an Iowa meth fact sheet; a brief overview of the law; and general compliance guidelines for consumers, pharmacies, retailers and law enforcement. Most provisions of this law, pertaining to pseudoephedrine sales, are effective May 21, 2005. However, two other provisions were effective immediately—March 22, 2005—upon the Governor’s signing of this measure into law: (1) removal of exceptions on the Schedule V Controlled Substance status for ephedrine [all ephedrine products now may only be sold in licensed pharmacies…no retail sales of ephedrine permitted]; and (2) addition of a requirement that bailable defendants charged with manufacture, delivery, possession with the intent to deliver, or distribution of methamphetamine, shall, in addition to a substance abuse evaluation, remain under supervision and be required to undergo random drug tests as a condition of release.
Resumo:
The present research project was designed to determine thermal properties, such as coefficient of thermal expansion (CTE) and thermal conductivity, of Iowa concrete pavement materials. These properties are required as input values by the Mechanistic-Empirical Pavement Design Guide (MEPDG). In this project, a literature review was conducted to determine the factors that affect thermal properties of concrete and the existing prediction equations for CTE and thermal conductivity of concrete. CTE tests were performed on various lab and field samples of portland cement concrete (PCC) at the Iowa Department of Transportation and Iowa State University. The variations due to the test procedure, the equipment used, and the consistency of field batch materials were evaluated. The test results showed that the CTE variations due to test procedure and batch consistency were less than 5%, and the variation due to the different equipment was less than 15%. Concrete CTE values were significantly affected by different types of coarse aggregate. The CTE values of Iowa concrete made with limestone+graval, quartzite, dolomite, limestone+dolomite, and limestone were 7.27, 6.86, 6.68, 5.83, and 5.69 microstrain/oF (13.08, 12.35, 12.03, 10.50, and 10.25 microstrain/oC), respectively, which were all higher than the default value of 5.50 microstrain/oF in the MEPDG program. The thermal conductivity of a typical Iowa PCC mix and an asphalt cement concrete (ACC) mix (both with limestone as coarse aggregate) were tested at Concrete Technology Laboratory in Skokie, Illinois. The thermal conductivity was 0.77 Btu/hr•ft•oF (1.33 W/m•K) for PCC and 1.21 Btu/hr•ft•oF (2.09 W/m•K) for ACC, which are different from the default values (1.25 Btu/hr•ft•oF or 2.16 W/m•K for PCC and 0.67 Btu/hr•ft•oF or 1.16 W/m•K for ACC) in the MEPDG program. The investigations onto the CTE of ACC and the effects of concrete materials (such as cementitious material and aggregate types) and mix proportions on concrete thermal conductivity are recommended to be considered in future studies.
Resumo:
Pavement marking technology is a continually evolving subject. There are numerous types of materials used in the field today, including (but not limited to) paint, epoxy, tape, and thermoplastic. Each material has its own set of unique characteristics related to durability, retroreflectivity, installation cost, and life-cycle cost. The Iowa Highway Research Board was interested in investigating the possibility of developing an ongoing program to evaluate the various products used in pavement marking. This potential program would maintain a database of performance and cost information to assist state and local agencies in determining which materials and placement methods are most appropriate for their use. The Center for Transportation Research and Education at Iowa State University has completed Phase I of this research: to identify the current practice and experiences from around the United States to recommend a further course of action for the State of Iowa. There has been a significant amount of research completed in the last several years. Research from Michigan, Pennsylvania, South Dakota, Ohio, and Alaska all had some common findings: white markings are more retroreflective than yellow markings; paint is by-and-large the least expensive material; paint tends to degrade faster than other materials; thermoplastic and tapes had higher retroreflective characteristics. Perhaps the most significant program going on in the area of pavement markings is the National Transportation Product Evaluation Program (NTPEP). This is an ongoing research program jointly conducted by the American Association of State Highway and Transportation Officials and its member states. Field and lab tests on numerous types of pavement marking materials are being conducted at sites representing four climatological areas. These results are published periodically for use by any jurisdiction interested in pavement marking materials performance. At this time, it is recommended that the State of Iowa not embark on a test deck evaluation program. Instead, close attention should be paid to the ongoing evaluations of the NTPEP program. Materials that fare well on the NTPEP test de cks should be considered for further field studies in Iowa.
Investigation of Electromagnetic Gauges for Determining In-Place HMA Density, Final Report, May 2007
Resumo:
Density is an important component of hot-mix asphalt (HMA) pavement quality and long-term performance. Insufficient density of an in-place HMA pavement is the most frequently cited construction-related performance problem. This study evaluated the use of electromagnetic gauges to nondestructively determine densities. Field and laboratory measurements were taken with two electromagnetic gauges—a PaveTracker and a Pavement Quality Indicator (PQI). Test data were collected in the field during and after paving operations and also in a laboratory on field mixes compacted in the lab. This study revealed that several mix- and project-specific factors affect electromagnetic gauge readings. Consequently, the implementation of these gauges will likely need to be done utilizing a test strip on a project- and mix-specific basis to appropriately identify an adjustment factor for the specific electromagnetic gauge being used for quality control and quality assurance (QC/QA) testing. The substantial reduction in testing time that results from employing electromagnetic gauges rather than coring makes it possible for more readings to be used in the QC/QA process with real-time information without increasing the testing costs.