18 resultados para Augmented Reality, Location Awareness, CSCW, Cooperation,Distributed System
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The Office of Transportation Data, in cooperation with the Federal Highway Administration, prepares this biennial traffic report. This report is used by federal, state, and local governmental agencies in determining highway needs, construction priorities, route location and environmental impact studies, and the application of appropriate design standards. The general public uses this information in determining the amount of traffic that passes a given area as they make their development plans and propose land use changes. The above reflects only a few of the many technical uses for this data.
Resumo:
The role of rural demand-responsive transit is changing, and with that change is coming an increasing need for technology. As long as rural transit was limited to a type of social service transportation for a specific set of clients who primarily traveled in groups to common meal sites, work centers for the disabled, or clinics in larger communities, a preset calendar augmented by notes on a yellow legal pad was sufficient to develop schedules. Any individual trips were arranged at least 24 to 48 hours ahead of time and were carefully scheduled the night before in half-hour or twenty-minute windows by a dispatcher who knew every lane in the service area. Since it took hours to build the schedule, any last-minute changes could wreak havoc with the plans and raise the stress level in the dispatch office. Nevertheless, given these parameters, a manual scheduling system worked for a small demand-responsive operation.
Resumo:
The programs included in this Discussion Paper no. 17 are Distance, Unravel, Retrench and Alloc 6B that deal with location-allocation analyses first published in 1973 by the Department of Geography, The University of Iowa.
Resumo:
This report is a culmination of the Location Referencing System (LRS) team. The team was charged with defining a system that coordinates the collection storage, and access to location referencing information by developing an LRS to be used throughout the Iowa DOT.
Resumo:
The goal of this work was to move structural health monitoring (SHM) one step closer to being ready for mainstream use by the Iowa Department of Transportation (DOT) Office of Bridges and Structures. To meet this goal, the objective of this project was to implement a pilot multi-sensor continuous monitoring system on the Iowa Falls Arch Bridge such that autonomous data analysis, storage, and retrieval can be demonstrated. The challenge with this work was to develop the open channels for communication, coordination, and cooperation of various Iowa DOT offices that could make use of the data. In a way, the end product was to be something akin to a control system that would allow for real-time evaluation of the operational condition of a monitored bridge. Development and finalization of general hardware and software components for a bridge SHM system were investigated and completed. This development and finalization was framed around the demonstration installation on the Iowa Falls Arch Bridge. The hardware system focused on using off-the-shelf sensors that could be read in either “fast” or “slow” modes depending on the desired monitoring metric. As hoped, the installed system operated with very few problems. In terms of communications—in part due to the anticipated installation on the I-74 bridge over the Mississippi River—a hardline digital subscriber line (DSL) internet connection and grid power were used. During operation, this system would transmit data to a central server location where the data would be processed and then archived for future retrieval and use. The pilot monitoring system was developed for general performance evaluation purposes (construction, structural, environmental, etc.) such that it could be easily adapted to the Iowa DOT’s bridges and other monitoring needs. The system was developed allowing easy access to near real-time data in a format usable to Iowa DOT engineers.
Resumo:
This report summarizes progress made in Phase 1 of the GIS-based Accident Location and Analysis System (GIS-ALAS) project. The GIS-ALAS project builds on several longstanding efforts by the Iowa Department of Transportation (DOT), law enforcement agencies, Iowa State University, and several other entities to create a locationally-referenced highway accident database for Iowa. Most notable of these efforts is the Iowa DOT’s development of a PC-based accident location and analysis system (PC-ALAS), a system that has been well received by users since it was introduced in 1989. With its pull-down menu structure, PC-ALAS is more portable and user-friendly than its mainframe predecessor. Users can obtain accident statistics for locations during specified time periods. Searches may be refined to identify accidents of specific types or involving drivers with certain characteristics. Output can be viewed on a computer screen, sent to a file, or printed using pre-defined formats.
Resumo:
This handbook has been prepared to complement the informational videotape, Your Ticket to Safety: Bloodborne Pathogen Awareness for Transit Professionals. The handbook also provides a personal and ready reference regarding bloodborne pathogens for public transit system personnel, including managers, drivers, mechanics, other employees and service providers. Additional copies of this handbook and the videotape are available through the Office of Public Transit.
Resumo:
This phase of the electronic collaboration project involved two major efforts: 1) implementation of AEC Sync (formerly known as Attolist), a web-based project management system (WPMS), on the Broadway Viaduct Bridge Project and the Iowa Falls Arch Bridge Project and 2) development of a web-based project management system for bridge and highway construction projects with less than $10 million in contract value. During the previous phase of this project (fiscal year 2010), the research team helped with the implementation process for AEC Sync and collected feedback from the Broadway Viaduct project team members before the start of the project. During the 2011 fiscal year, the research team collected the post-project surveys from the Broadway Viaduct project members and compared them to the pre-project survey results. The results of the AEC Sync implementation on the Broadway project were positive. The project members were satisfied with the performance of the AEC Sync software and how it facilitated document management and its transparency. In addition, the research team distributed, collected, and analyzed the pre-project surveys for the Iowa Falls Arch Bridge Project. The implementation of AEC Sync for the Iowa Falls Arch Bridge Project appears to also be positive, based on the pre-project surveys. The fourth phase of this electronic collaboration project involves the identification and implementation of a WPMS solution for smaller bridge and highway projects. The workflow for the shop drawing approval process for sign truss projects was documented and used to identify possible WPMS solutions. After testing and evaluating several WPMS solutions, Microsoft SharePoint Foundation’s site pages were selected to be pilot-tested on sign truss projects. Due to the limitation on the SharePoint license that the Iowa Department of Transportation (DOT) has, a file transfer protocol (FTP) site will be developed alongside this site to allow contractors to upload shop drawings to the Iowa DOT. The SharePoint site pages are expected to be ready for implementation during the 2012 calendar year.
Resumo:
This report is on state-of-the-art research efforts specific to infrastructure inventory/data collection with sign inventory as a case study. The development of an agency-wide sign inventory is based on feature inventory and location information. Specific to location, a quick and simple location acquisition tool is critical to tying assets to an accurate location-referencing system. This research effort provides a contrast between legacy referencing systems (route and milepost) and global positioning system- (GPS-) based techniques (latitude and longitude) integrated into a geographic information system (GIS) database. A summary comparison of field accuracies using a variety of consumer grade devices is also provided. This research, and the data collection tools developed, are critical in supporting the Iowa Department of Transportation (DOT) Statewide Sign Management System development effort. For the last two years, a Task Force has embarked on a comprehensive effort to develop a sign management system to improve sign quality, as well as to manage all aspects of signage, from request, ordering, fabricating, installing, maintaining, and ultimately removing, and to provide the ability to budget for these key assets on a statewide basis. This effort supported the development of a sign inventory tool and is the beginning of the development of a sign management system to support the Iowa DOT efforts in the consistent, cost effective, and objective decision making process when it comes to signs and their maintenance.
Resumo:
County engineers in Iowa face the dual problems of rapidly escalating costs and a decreasing rate of growth of revenues. Various priority systems are in use, ranking projects for inclusion in road improvement programs, but they generally have weaknesses when used to compare one project with another in a different location. The sufficiency rating system has proven to be a useful tool in developing a priority list of projects for primary road systems, but there are none currently in use for secondary road systems. The research reported here was undertaken to develop a sufficiency rating system which could be used for secondary roads in Iowa and to produce the necessary forms and instructions to aid county engineering personnel in their efforts to complete the ratings for roads within their county.
Resumo:
The primary objectives of the Electronic Bulletin Board System (BBS) project were to: (1) Provide an electronic communication tool which would link city and county engineering offices to each other and to other governmental agencies for messaging and data sharing; (2) Provide a dial-up site for reference information or files accessible on-demand; and (3) Provide a "stepping stone" to the world of electronic data transfer, recognizing that most local government employees face a huge complex of technology with limited knowledge of computers and communications tools. The system was designed to be as simple as possible, and to require minimal equipment and software cost to the users. The original system was an Apex 386/25 computer with MS-DOS 5.0 software and the final configuration was an HP Vectra XM Pentium 90 with MS-NT 3.51 and Mustang - Wildcat 5.0 software. The users of the BBS were county engineers and their staff, offices in the central office of the Iowa Department of Transportation (DOT) and Resident Construction Engineers at the Iowa DOT. Much of the activity was between the county engineers, and their staffs, and the Iowa DOT offices with which they have ongoing business activities. The BBS contained files for mapping, Internet e-mail service, Accident Location Analysis System (ALAS) data, Iowa DOT bid lettings, and Autocad and Intergraph maps and standards. The 800 line calls were recorded and gave the best indication of the usage and the trends that were being followed. The usage tended to be higher in the winter months when design activities are occurring and lower in the summer months when the construction is in progress. The project was judged a success. The BBS did provide a "stepping stone" to the world of electronic data transfer.
Resumo:
A network of 25 sonic stage sensors were deployed in the Squaw Creek basin upstream from Ames Iowa to determine if the state-of-the-art distributed hydrological model CUENCAS can produce reliable information for all road crossings including those that cross small creeks draining basins as small as 1 sq. mile. A hydraulic model was implemented for the major tributaries of the Squaw Creek where IFC sonic instruments were deployed and it was coupled to CUENCAS to validate the predictions made at small tributaries in the basin. This study demonstrates that the predictions made by the hydrological model at internal locations in the basins are as accurate as the predictions made at the outlet of the basin. Final rating curves based on surveyed cross sections were developed for the 22 IFC-bridge sites that are currently operating, and routine forecast is provided at those locations (see IFIS). Rating curves were developed for 60 additional bridge locations in the basin, however, we do not use those rating curves for routine forecast because the lack of accuracy of LiDAR derived cross sections is not optimal. The results of our work form the basis for two papers that have been submitted for publication to the Journal of Hydrological Engineering. Peer review of our work will gives a strong footing to our ability to expand our results from the pilot Squaw Creek basin to all basins in Iowa.
Resumo:
This phase of the research project involved two major efforts: (1) Complete the implementation of AEC-Sync (formerly known as Attolist) on the Iowa Falls Arch Bridge project and (2) develop a web-based project management system (WPMS) for projects under $10 million. For the first major effort, AEC-Sync was provided for the Iowa Department of Transportation (DOT) in a software as a service agreement, allowing the Iowa DOT to rapidly implement the solution with modest effort. During the 2010 fiscal year, the research team was able to help with the implementation process for the solution. The research team also collected feedback from the Broadway Viaduct project team members before the start of the project and implementation of the solution. For the 2011 fiscal year, the research team collected the post-project surveys from the Broadway Viaduct project members and compared them to the pre-project survey results. The result of the AEC-Sync implementation in the Broadway Viaduct project was a positive one. The project members were satisfied with the performance of AEC-Sync and how it facilitated document management and transparency. In addition, the research team distributed, collected, and analyzed the pre-project surveys for the Iowa Falls Arch Bridge project. During the 2012 fiscal year, the research team analyzed the post-project surveys for the Iowa Falls Arch Bridge project AEC-Sync implementation and found a positive outcome when compared to the pre-project surveys. The second major effort for this project involved the identification and implementation of a WPMS solution for smaller bridge and highway projects. During the 2011 fiscal year, Microsoft SharePoint was selected to be implemented on these smaller highway projects. In this year, workflows for the shop/working drawings for the smaller highway projects specified in Section 1105 of the Iowa DOT Specifications were developed. These workflows will serve as the guide for the development of the SharePoint pages. In order to implement the Microsoft SharePoint pages, the effort of an integrated team proved to be vital because it brought together the expertise required from researchers, programmers, and webpage developers to develop the SharePoint pages.
Resumo:
TPMS is proposed as a distributed, PC-based system for automating two processes required for road improvements in Iowa: a) the annual preparation, submission, and approval of road improvement programs. b) the ongoing process of developing plans and obtaining approval for projects to be let for bids.
Resumo:
Numerous strategies have been experimented with nationwide in an attempt to reduce the overall number of pedestrian-vehicle crashes, especially in instances where improper crossing or failure to yield was the proximate cause of the crash. Some of these measures include overhead signs, flashing warning beacons, advanced crossing signs, more visible pavement markings, in-street “Yield to Pedestrian” signs, and more recently, in-pavement flashing lights. Pedestrian safety has been a key issue for the City of Cedar Rapids, Iowa, in particular at non-controlled intersections and mid-block crossings. In 2002, the city council gave preliminary approval to implement a pedestrian-actuated overhead flasher system in conjunction with an in-pavement flasher system at the intersection of 1st Avenue NE and 4th Street NE in the downtown central business district. This location is uncontrolled and has several elements that can create conflicts between pedestrians, vehicles, and trains that service local industry. This report summarizes the results from a small-scale study completed by CTRE to evaluate the effectiveness of the in-pavement flasher system installed in downtown Cedar Rapids. The installation of in-pavement flashing warning lights at the pedestrian crosswalk at this site has had a net positive effect on the safety characteristics of the location. The results of this study show a marked improvement in motorist compliance with the state law requiring that motorists yield to pedestrians in the crosswalk. The pedestrian and motorist surveys show that both groups felt the in-pavement flashing lights have increased motorist awareness, especially at night. The data indicate the in-pavement flashing warning lights improved the motorists' response to pedestrians in the area, and that the system could be operational throughout summer and winter conditions.