12 resultados para 13627-010
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
As the list of states adopting the HWTD continues to grow, there is a need to evaluate how results are utilized. AASHTO T 324 does not standardize the analysis and reporting of test results. Furthermore, processing and reporting of the results among manufacturers is not uniform. This is partly due to the variation among agency reporting requirements. Some include only the midpoint rut depth, while others include the average across the entire length of the wheel track. To eliminate bias in reporting, statistical analysis was performed on over 150 test runs on gyratory specimens. Measurement location was found to be a source of significant variation in the HWTD. This is likely due to the nonuniform wheel speed across the specimen, geometry of the specimen, and air void profile. Eliminating this source of bias when reporting results is feasible though is dependent upon the average rut depth at the final pass. When reporting rut depth at the final pass, it is suggested for poor performing samples to average measurement locations near the interface of the adjoining gyratory specimens. This is necessary due to the wheel lipping on the mold. For all other samples it is reasonable to only eliminate the 3 locations furthest from the gear house. For multi‐wheel units, wheel side was also found to be significant for poor and good performing samples. After eliminating the suggested measurements from the analysis, the wheel was no longer a significant source of variation.
Resumo:
In 2004 Walnut Creek was placed on the 303d list of impaired water bodies for lack of aquatic life with biological causes. Sediment from farmland as well as the stream banks was listed as the most likely stressor. In response to this listing a preliminary watershed assessment was completed by the six counties which have land in the Walnut Creek watershed. Walnut Creek flows through portions of Shelby, Pottawattamie, Montgomery, Mills, Page, and Fremont Counties before reaching its confluence with the West Nishnabotna River. The preliminary study assessed resource concerns and evaluated anticipated landowner participation levels for the six Huc 12 sub-watersheds which divide the Walnut Creek basin. These preliminary assessments revealed a priority sub-watershed which lies between US Hwy 6 and Hwy 34. A development grant was then funded by the Division of Soil Conservation to conduct a detailed assessment of this area. The detailed assessment involved an assessment of the uplands as well as the stream itself. A better understanding of the resource concerns was gained through the assessment, allowing for a comprehensive watershed plan to be developed. A variety of best management practices will be necessary for our project to be a success, many of which will be funded by other sources besides the WIRB. This grant is the first request for funding submitted by the East Pottawattamie and Montgomery SWCDs’. This grant will serve as the first critical step in building what is destined to be a true watershed success story.
Resumo:
Part of a phased approach, an intensive information and education program, construction of erosion control practices, and sediment control on construction sites is proposed. These proposed practices will manage sediment runoff and nutrient runoff on agricultural and urban areas. Sediment control “structures” such as waterways, wetlands, modified terraces, grade stabilization structures, sediment basins, and rain gardens is proposed and will be combined with nutrient and pesticide management and reduced tillage to reduce non-point source pollution. A reduction of 15% of the sediment and phosphorus delivered to a water body from priority areas will be looked at as a success in this short-term project focused primarily at education within the project area which is also, for the most part, the top 25% sediment load producing sub-watersheds. In addition, four urban areas have been identified as part of this project as needing immediate assistance. A combination of urban and agricultural conservation practices, shoreline revegetation, and education of landowners will be used to achieve these results on both the urban and the agricultural arena.
Resumo:
With this application, the College Creek sub-watershed in Ames represents both regional collaboration and locally directed action to improve an Iowa watershed. Already completed watershed assessment identified more than 4000 tons/yr of sediment delivered from within the Ames city limits due to degraded stream conditions. The water quality enhancement goal of this project is reducing sediment delivery specifically from unstable streambanks and degrading stream channels on College Creek, one of 4 Ames tributaries to Squaw Creek. The project will also redirect urban storm water runoff into engineered infiltration systems, intercepting it from storm drains entering College Creek. This application builds on storm water runoff demonstration projects and research already funded in the College Creek sub-watershed by EPA Region 7 and Iowa DNR. Public outreach, one of the key elements of this project, is built into every phase from engineering design feedback to construction. Innovative neighborhood learning circles are utilized to educate residents and share public feedback with project engineers to ensure that project elements are both technically appropriate and socially acceptable. All practices proposed in this project -stream stabilization, storm water infiltration, and neighborhood learning circle techniques-have already been successfully demonstrated in the College Creek sub-watershed by the City of Ames in partnership with Iowa State University.
Resumo:
The Dickinson SWCD is applying for $486,800 over three years from the Watershed Improvement Fund to enhance water quality in Dickinson County through an impairment-based, locally directed watershed improvement project dealing specifically with storm water runoff. The LID Project will provide a cost share incentive and technical expertise to individual and business owners in specially targeted districts who are willing to implement low impact development techniques such as rain gardens, bioswales, pervious paving to reduce storm water runoff from their properties. Goals for the project include: 1) Defining and prioritizing urban watersheds in the Iowa Great Lakes region for implementation of Low Impact Development Practices; 2) Providing technical expertise in the form of a graduate assistant/project manager to design and oversee construction; 3) Continuing public education of such practices and their local existence through project kiosk, brochures, County Naturalist programs, local cable television shows, tours and other interactions of the Clean Water Alliance with its 50 partners in the area concerned about water quality; and 4) Completing 125 separate projects over a three year period.
Resumo:
The purpose of this project is to develop a management plan to address the City of Alta’s stormwater runoff. Currently, there is no management plan and the city is growing, so there are increased runoff problems from both residential and industrial sources. A large assortment of pollutants flow from these areas, examples include various forms of sediment, paper, plastic, gravel and metal as well as less visible potentially toxic pollution from lawns, streets, gas stations and other commercial and industrial areas. The goal for this project is to construct two infiltration/detention basins to protect water quality and reduce the peak volume of the City of Alta’s urban runoff. Each basin is designed with two functions: Control gully erosion and surface erosion with detention, while incorporating water quality through infiltration. The downstream erosion control provided by detaining runoff will reduce sediment delivery to Powell Creek and protect downstream agricultural land from urban runoff. The infiltration features designed into the basins will capture pollutants commonly associated with urban stormwater runoff such as: sediment, sand, gravel hydrocarbons, particulate matter, heavy metals, and nutrients.
Resumo:
Brief Project Summary (no greater than this space allows): Leisure Lake is a 20 acre water body located in northwest Jackson County with a 2,581 acre drainage area. This portion of the Maquoketa Watershed including the lake is a tributary to Lytle Creek which drains into the North Fork Maquoketa River and into the Maquoketa Watershed. Portions of the Lytle Creek and North Fork Maquoketa River are on the 303(d) impaired waterbodies list. The project area includes a community of 370 residential properties and one business that currently has no central waste water collection and treatment system. The County Sanitarian estimates at least 225 of these properties do not have properly operating septic systems and ultimately drain their wastewater into the lake. The purpose of this project is to construct a wastewater collection and treatment facility to improve water quality in the creek and river. The project will eliminate the non-permitted septic systems and construct a new wastewater system to properly treat wastewater prior to its discharge into the waterways.
Resumo:
The Rathbun Land and Water Alliance and partners have undertaken a highly effective approach to water quality protection through the Rathbun Lake Special Project. This approach is achieving a significant reduction in the sediment and phosphorus that impair water quality in Rathbun Lake and its tributaries as a result of the targeted application of best management practices (BMPs) for priority land in the watershed. This project application proposes to assist landowners to apply BMPs that will reduce sediment and phosphorus delivery from priority land in three targeted sub-watersheds as part of the Rathbun Lake Special Project. Features of this project are: (1) use of geographic information system (GIS) analysis to identify priority land that requires BMPs; (2) assistance for landowners to apply BMPs for 1,200 acres that will reduce the annual delivery of sediment by 1,800 tons and phosphorus by 6,000 pounds; (3) evaluation of the benefits from BMP application using GIS analysis and water quality monitoring; and (4) watershed outreach activities that encourage landowners to apply BMPs for priority land to protect water quality.
Resumo:
The Rathbun Land and Water Alliance and partners have undertaken a highly effective approach to water quality protection through the Rathbun Lake Special Project. This approach is achieving a significant reduction in the sediment and phosphorus that impair water quality in Rathbun Lake and its tributaries as a result of the targeted application of best management practices (BMPs) for priority land in the watershed. This project application proposes to assist landowners to apply BMPs that will reduce sediment and phosphorus delivery from priority land in three targeted sub-watersheds as part of the Rathbun Lake Special Project. Features of this project are:(1) use of geographic information system (GIS) analysis to identify priority land that requires BMPs;(2) assistance for landowners to apply BMPs for 1,200 acres that will reduce the annual delivery of sediment by 1,800 tons and phosphorus by 6,000 pounds;(3) evaluation of the benefits from BMP application using GIS analysis and water quality monitoring; and (4) watershed outreach activities that encourage landowners to apply BMPs for priority land to protect water quality.
Resumo:
The Greene County, Iowa overlay project, completed in October 1973, was inspected on October 16 & 17, 1978 After five years of service The 33 fibrous concrete sections, four CRCP sections, two mesh reinforced and two plain concrete sections with doweled reinforcement were rated relative to each other on a scale of 0 t o 100. The rating was conducted by the original members of the Project Planning Committee, Iowa DOT, Iowa Counties, Federal Highway Administration, University of Illinois and industry representatives . In all , there were 23 representatives who rated this project . The 23 values were then averaged to provide a final rating number for each section. The highest panel rating (90) was assigned to the 5-inch thick , deformed barre in forced PCC sections ; an 86t o a 3-inch thick , 160 lbs. of fiber and 600 lbs . of cement on a partial bonded surface ; an 84 to the 4-inch CRC with elastic joints (bonded) and an 84 to a 4-inch mesh reinforce section. One of the major factors influencing performance appears t o be the thickness. In the fibrous concrete overlay, The greatest influences appears t o be the fiber content. Overlay Sections containing 160 1b/yd3 of Fiber are, in almost all cases , outperforming those c o n t a i n i n g 60 or 100. It is obvious at This time meth at the 3-inch thick fibrous concrete overlays are, in general, out performing the 2-inch thick sections. The performance of the fibrous concrete the overlay appears to be favorably influenced by: (1) The use of higher a spectra fiber (0.025 x 2.5 i n c h e s ) v e r s u s (0.010 x 0.022 x 1.0 inches) (2) The use of a lower cement c o n t e n t ( 600 versus 750 1b/yd3) However, The set less well defined and the improvements in overlay performance attributed to high aspect ratio fibers and low cement contents.
Roadway Lighting and Safety: Phase II – Monitoring Quality, Durability and Efficiency, November 2011
Resumo:
This Phase II project follows a previous project titled Strategies to Address Nighttime Crashes at Rural, Unsignalized Intersections. Based on the results of the previous study, the Iowa Highway Research Board (IHRB) indicated interest in pursuing further research to address the quality of lighting, rather than just the presence of light, with respect to safety. The research team supplemented the literature review from the previous study, specifically addressing lighting level in terms of measurement, the relationship between light levels and safety, and lamp durability and efficiency. The Center for Transportation Research and Education (CTRE) teamed with a national research leader in roadway lighting, Virginia Tech Transportation Institute (VTTI) to collect the data. An integral instrument to the data collection efforts was the creation of the Roadway Monitoring System (RMS). The RMS allowed the research team to collect lighting data and approach information for each rural intersection identified in the previous phase. After data cleanup, the final data set contained illuminance data for 101 lighted intersections (of 137 lighted intersections in the first study). Data analysis included a robust statistical analysis based on Bayesian techniques. Average illuminance, average glare, and average uniformity ratio values were used to classify quality of lighting at the intersections.
Resumo:
Iowa has more than 13,000 miles of portland cement concrete (PCC) pavement. Some pavements have performed well for over 50 years, while others have been removed or overlaid due to the premature deterioration of joints and cracks. Some of the premature deterioration is classical D-cracking, which is attributed to a critically saturated aggregate pore system (freeze-thaw damage). However, some of the premature deterioration is related to adverse chemical reactivity involving carbonate coarse aggregate. The objective of this paper is to demonstrate the value of a chemical analysis of carbonate aggregate using X-ray equipment to identify good or poor quality. At least 1.5% dolomite is necessary in a carbonate aggregate to produce a discernible dolomite peak. The shift of the maximum-intensity X-ray diffraction dolomite d-spacing can be used to predict poor performance of a carbonate aggregate in PCC. A limestone aggregate with a low percentage of strontium (less than 0.013) and phosphorus (less than 0.010) would be expected to give good performance in PCC pavement. Poor performance in PCC pavement is expected from limestone aggregates with higher percentages (above 0.05) of strontium.