9 resultados para 08101810 CTD-005

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Iowa State University (ISU) Bridge Engineering Center (BEC) performed full-scale laboratory testing of the proposed paving notch replacement system. The objective of the testing program was to verify the structural capacity of the proposed precast paving notch system and to investigate the feasibility of the proposed solution. This report describes the laboratory testing procedure and discusses its results

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approach slab pavement at integral abutment (I-A) bridges are prone to settlement and cracking, which has been long recognized by the Iowa Department of Transportation (DOT). A commonly recommended solution is to integrally attach the approach slab to the bridge abutment. This study sought to supplement a previous project by instrumenting, monitoring, and analyzing the behavior of an approach slab tied to a integral abutment bridge. The primary objective of this investigation was to evaluate the performance of the approach slab. To satisfy the research needs, the project scope involved reviewing a similar previous study, implementing a health monitoring system on the approach slab, interpreting the data obtained during the evaluation, and conducting periodic visual inspections of the bridge and approach slab. Based on the information obtained from the testing, the following general conclusions were made: the integral connection between the approach slab and the bridge appears to function well with no observed distress at this location and no relative longitudinal movement measured between the two components; the measured strains in the approach slabs indicate a force exists at the expansion joint and should be taken into consideration when designing both the approach slab and the bridge and the observed responses generally followed an annual cyclic and/or short term cyclic pattern over time; the expansion joint at one side of the approach slab does not appear to be functioning as well as elsewhere; much larger frictional forces were observed in this study compared to the previous study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Buena Vista SWCD is submitting this WIRB request on behalf of both Buena Vista and Pocahontas SWCDs. The two SWCDs are working jointly on a project that includes three existing Mississippi River Basin Imitative (MRBI) project areas in the North Raccoon River Watershed. The total project area is 280,654 crop acres. The MRBI project involves installing conservation practices through the EQIP program. Funding from MRBI will support costs of practice design, layout and checkout, however, there is no funding to market and sell the program and practices to landowners and producers in the project area. Both soil and water districts are financially supporting work currently being done to encourage signup for the approved practices. To effectively implement the MRBI project it is imperative that marketing and promotion through group meetings and one-on­ one contacts is completed. Funding from WIRB will allow the existing employee to spend the needed time on these promotional activities in both Buena Vista and Pocahontas County. Through this WIRB request these two SWCDs districts plan to apply over $800,000 worth of conservation practices that is funded through the MRBI program. The return from this investment of WIRB dollars is large. This is an opportunity to support a large amount of conservation work in the North Raccoon River Watershed, which, is also an important water source for the city Des Moines and provides recreational activities from Des Moines up to BY and Pocahontas Counties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary goal of the Hewitt Creek watershed council is to have Hewitt-Hickory Creek removed from the Iowa impaired waters (303d) list. Hewitt Creek watershed, a livestock dense 23,005 acre sub-watershed of the Maquoketa River Basin, is 91.2% agricultural and 7.5% woodland. Since 2005, sixty-seven percent of 84 watershed farm operations participated in an organized watershed improvement effort using a performance­ based watershed management approach, reducing annual sediment delivery to the stream by 4,000 tons. Watershed residents realize that water quality improvement efforts require a long-term commitment in order to meet their watershed improvement goals and seek funding for an additional five years to continue their successful watershed improvement project. Cooperators will be provided incentives for improved environmental performance, along with incentives and technical support to address feedlot runoff issues and sub-surface nitrate-nitrogen loss. The Phosphorus Index, Soil Conditioning Index and cornstalk nitrate test will be used by producers as measures of performance to refine nutrient and soil loss management and to determine effective alternatives to reduce nutrient and sediment delivery. Twenty-five livestock operations will improve feedlot runoff control systems and five sub-surface bioreactors will be installed to reduce nitrate delivery from priority tile-drained fields. The Hewitt Creek council will seek additional cost-share funding for high-cost feedlot runoff control structures, sediment control basins and stream bank stabilization projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Duck Creek watershed has been the target study area of multiple reports by multiple agencies including a 2009 DNR Watershed Master Planning Grant, and the 2011 Duck and Blackhawk Creek Stream Assessment. The information obtained from these reports has lead the City of Davenport to take a micro-watershed approach to identifying the significant contributors to flooding and water quality issues that affect Duck Creek, its tributaries and the surrounding landscape, and devise solutions to mitigate these concerns. The construction of the proposed Littig Area Detention Basin comes as a recommendation from the Comprehensive Stormwater Management Plan for Pheasant, Goose, and Silver Creeks as prepared by James M. Montgomery, Consulting Engineers, Inc. in September 1991. At the time this report was prepared this basin was one of eight regional detention basins proposed in the upstream watersheds to alleviate flooding on tributaries to Duck Creek. The basin is designed and situated to detain runoff from approximately two hundred and twenty-seven (227) acres of previously developed moderate density residential area with intermixed light business and schools. This basin will reduce flow rates entering the receiving waters from the two, five and ten year storm events by an average of eighty-five percent (85%) and reduce flow rates from the twenty-five, fifty, and one hundred year events by a11 average of fifty percent (50%). With this flow rate reduction it is anticipated that streambank erosion in the immediate downstream receiving waters can be reduced or even stopped. The reduction in sediment leaving this upstream area will greatly enhance the water quality further downstream in Goose and Duck Creeks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Storm Lake, the state's fourth largest natural lake, has been the centerpiece of significant economic development, including a resort, water park, and state marina. While there have been considerable improvements to the lake's water quality through a major on-going lake restoration program and watershed project, the Little Storm Lake area still needs to be addressed. Little Storm Lake is a 190 acre area on the nmihwest side of Storm Lake. The water level in both areas is based on the dam height located on the southeast corner of Storm Lake. Approximately 70% of the water from the watershed flows through Little Storm Lake. Little Storm Lake originally had the ability to remove much of the sediment and nutrients from incoming waters. However, due to degradation, proper wetland function has been compromised. Under normal hydrologic conditions Little Storm Lake has the potential to function as a sediment trap for Storm Lake, but tllis capacity is overwhelmed during high flows. Little Storm Lake is at or near its sediment trapping capacity, which results in higher sediment transport into Storm Lake. Resuspension of sediments due to wind and other in-lake dynamics, such as rough fish, further exacerbate the total turbidity from suspended sediment and results in movement of sediment from Little Storm Lake into Storm Lake. This project includes a fish barrier and water retention structure between Little Storm Lake and Storm Lake and the construction of a pumping station and associated equipment. The project involves periodic dewatering of Little Storm Lake during years of favorable climatological conditions to consolidate the sediments and revegetate the area. Construction of the fish banier would aid restoration efforts by preventing rough fish from destroying the vegetation and would decrease recruitment of rough fish by limiting their spawning area. In the future, if the diminished trapping capacity of Little Storm Lake still results in sediment moving into Storm Lake, a dredging project would be initiated to deepen Little Storm Lake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proposed project will include the construction of a sanitary sewer collection system and a community gravel filter wastewater treatment system in the unsewered community of Maple River Junction in Carroll County. The system will be built to include approximately 1,150 feet of 4-inch sanitary sewer main, 3,540 feet of 4-inch service main an approximately 35 septic tanks. Some existing 4-inch PVC sewer piping as well as existing septic tanks in good condition will continue to be used in order to control capital costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Holiday Lake is included in the Walnut Creek watershed, which is listed on the 303(d) list of impaired water bodies. Research indicates that the causes of impairment are sedimentation and habitat alterations. To improve water quality, the goals of this project are to reduce the sediment delivery into Holiday Lake by 50% and assist in educating watershed residents about cost-effective ways to control sediment and nutrient contaminates. The best management practices will be installed to filter the water, reducing sediment and chemical loading into the lake. When all practices are installed, nearly 100% of the lake’s drainage area will be controlled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The City of Marquette lies in the 65,000 acre Mississippi River watershed, and is surrounded by steep bluffs. Though scenic, controlling water runoff during storm events presents significant challenges. Flash-flooding from the local watershed has plagued the city for decades. The people of Marquette have committed to preserve the water quality of key natural resources in the area including the Bloody Run Creek and associated wetlands by undertaking projects to control the spread of debris and sediment caused by excess runoff during area storm events. Following a July 2007 storm (over 8” of rain in 24 hours) which caused unprecedented flood damage, the City retained an engineering firm to study the area and provide recommendations to eliminate or greatly reduce uncontrolled runoff into the Bloody Run Creek wetland, infrastructure damage and personal property loss. Marquette has received Iowa Great Places designation, and has demonstrated its commitment to wetland preservation with the construction of Phase I of this water quality project. The Bench Area Storm Water Management Plan prepared by the City in 2008 made a number of recommendations to mitigate flash flooding by improving storm water conveyance paths, detention, and infrastructure within the Bench area. Due to steep slopes and rocky geography, infiltration based systems, though desirable, would not be an option over surface based systems. Runoff from the 240 acre watershed comes primarily from large, steep drainage areas to the south and west, flowing to the Bench area down three hillside routes; designated as South East, South Central and South West. Completion of Phase I, which included an increased storage capacity of the upper pond, addressed the South East and South Central areas. The increased upper pond capacity will now allow Phase II to proceed. Phase II will address runoff from the South West drainage area; which engineers have estimated to produce as much water volume as the South Central and South East areas combined. Total costs for Phase I are $1.45 million, of which Marquette has invested $775,000, and IJOBS funding contributed $677,000. Phase II costs are estimated at $617,000. WIRB funding support of $200,000 would expedite project completion, lessen the long term debt impact to the community and aid in the preservation of the Bloody Run Creek and adjoining wetlands more quickly than Marquette could accomplish on its own.