369 resultados para Steel-concrete bonding
Resumo:
The importance of rapid construction technologies has been recognized by the Federal Highway Administration (FHWA) and the Iowa DOT Office of Bridges and Structures. Recognizing this a two-lane single-span precast box girder bridge was constructed in 2007 over a stream. The bridge’s precast elements included precast cap beams and precast box girders. Precast element fabrication and bridge construction were observed, two precast box girders were tested in the laboratory, and the completed bridge was field tested in 2007 and 2008.
Resumo:
The importance of rapid construction technologies has been recognized by the Federal Highway Administration (FHWA) and the Iowa DOT Office of Bridges and Structures. Black Hawk County (BHC) has developed a precast modified beam-in-slab bridge (PMBISB) system for use with accelerated construction. A typical PMBISB is comprised of five to six precast MBISB panels and is used on low volume roads, on short spans, and is installed and fabricated by county forces. Precast abutment caps and a precast abutment backwall were also developed by BHC for use with the PMBISB. The objective of the research was to gain knowledge of the global behavior of the bridge system in the field, to quantify the strength and behavior of the individual precast components, and to develop a more time efficient panel-to-panel field connection. Precast components tested in the laboratory include two precast abutment caps, three different types of deck panel connections, and a precast abutment backwall. The abutment caps and backwall were tested for behavior and strength. The three panel-to-panel connections were tested in the lab for strength and were evaluated based on cost and constructability. Two PMBISB were tested in the field to determine stresses, lateral distribution characteristics, and overall global behavior.
Resumo:
For well over 100 years, the Working Stress Design (WSD) approach has been the traditional basis for geotechnical design with regard to settlements or failure conditions. However, considerable effort has been put forth over the past couple of decades in relation to the adoption of the Load and Resistance Factor Design (LRFD) approach into geotechnical design. With the goal of producing engineered designs with consistent levels of reliability, the Federal Highway Administration (FHWA) issued a policy memorandum on June 28, 2000, requiring all new bridges initiated after October 1, 2007, to be designed according to the LRFD approach. Likewise, regionally calibrated LRFD resistance factors were permitted by the American Association of State Highway and Transportation Officials (AASHTO) to improve the economy of bridge foundation elements. Thus, projects TR-573, TR-583 and TR-584 were undertaken by a research team at Iowa State University’s Bridge Engineering Center with the goal of developing resistance factors for pile design using available pile static load test data. To accomplish this goal, the available data were first analyzed for reliability and then placed in a newly designed relational database management system termed PIle LOad Tests (PILOT), to which this first volume of the final report for project TR-573 is dedicated. PILOT is an amalgamated, electronic source of information consisting of both static and dynamic data for pile load tests conducted in the State of Iowa. The database, which includes historical data on pile load tests dating back to 1966, is intended for use in the establishment of LRFD resistance factors for design and construction control of driven pile foundations in Iowa. Although a considerable amount of geotechnical and pile load test data is available in literature as well as in various State Department of Transportation files, PILOT is one of the first regional databases to be exclusively used in the development of LRFD resistance factors for the design and construction control of driven pile foundations. Currently providing an electronically organized assimilation of geotechnical and pile load test data for 274 piles of various types (e.g., steel H-shaped, timber, pipe, Monotube, and concrete), PILOT (http://srg.cce.iastate.edu/lrfd/) is on par with such familiar national databases used in the calibration of LRFD resistance factors for pile foundations as the FHWA’s Deep Foundation Load Test Database. By narrowing geographical boundaries while maintaining a high number of pile load tests, PILOT exemplifies a model for effective regional LRFD calibration procedures.
Resumo:
In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results ofLRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured loaddisplacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD.
Resumo:
The National Concrete Pavement Technology Center, Iowa Department of Transportation, and Federal Highway Administration set out to demonstrate and document the design and construction of portland cement concrete (PCC) overlays on two-lane roadways while maintaining two-way traffic. An 18.82 mile project was selected for 2011 construction in northeast Iowa on US 18 between Fredericksburg and West Union. This report documents planning, design, and construction of the project and lessons learned. The work included the addition of subdrains, full-depth patching, bridge approach replacement, and drainage structural repair and cleaning prior to overlay construction. The paving involved surface preparation by milling to grade and the placement of a 4.5 inch PCC overlay and 4 foot of widening to the existing pavement. In addition, the report makes recommendations on ways to improve the process for future concrete overlays.
Resumo:
To date there have been few investigations of the substructures in low-volume road (LVR) bridges. Steel sheet piling has the potential to provide an economical alternative to concrete bridge abutments, but it needs investigation with regard to vertical and lateral load resistance, construction methods, and performance monitoring. The objectives of this project were to develop a design approach for sheet pile bridge abutments for short-span low-volume bridges, formulate an instrumentation and monitoring plan to evaluate performance of sheet pile abutment systems, and understand the cost and construction effort associated with building the sheet pile bridge abutment demonstration project. Three demonstration projects (Boone, Blackhawk, and Tama Counties) were selected for the design, construction, and monitoring of sheet pile abutments bridges. Each site was unique and required site-specific design and instrumentation monitoring. The key findings from this study include the following: (1) sheet pile abutment bridges provide an effective solution for LVR bridges, (2) the measured stresses and deflection were different from the assumed where the differences reflect conservatism in the design and the complex field conditions, and (3) additional research is needed to optimize the design.
Resumo:
"Technical challenges exist with infrastructure that can be addressed by nondestructive evaluation (NDE) methods, such as detecting corrosion damage to reinforcing steel that anchor concrete bridge railings to bridge road decks. Moisture and chloride ions reach the anchors along the cold joint between the rails and deck, causing corrosion that weakens the anchors and ultimately the barriers. The Center for Nondestructive Evaluation at Iowa State University has experience in development of measurement techniques and new sensors using a variety of interrogating energies. This research evaluated feasibility of three technologies — x-ray radiation, ground-penetrating radar (GPR), and magnetic flux leakage (MFL) — for detection and quantification of corrosion of embedded reinforcing steel. Controlled samples containing pristine reinforcing steel with and without epoxy and reinforcing steel with 25 percent and 50 percent section reduction were embedded in concrete at 2.5 in. deep for laboratory evaluation. Two of the techniques, GPR and MFL, were used in a limited field test on the Iowa Highway 210 Bridge over Interstate 35 in Story County. The methods provide useful and complementary information. GPR provides a rapid approach to identify reinforcing steel that has anomalous responses. MFL provides similar detection responses but could be optimized to provide more quantitative correlation to actual condition. Full implementation could use either GPR or MFL methods to identify areas of concern, followed by radiography to give a visual image of the actual condition, providing the final guidance for maintenance actions." The full 103 page report and the 2 page Tech Transfer Summary are included in this link.
Resumo:
Concrete pavements can be designed and constructed to be as quiet as any other conventional pavement type in use today. This report provides an overview of how this can be done—and done consistently. In order to construct a quieter concrete pavement, the texture must have certain fundamental characteristics. While innovative equipment and techniques have shown promise for constructing quieter pavements in the future, quieter concrete pavements are routinely built today all across the United States using the following standard nominal concrete pavement textures: drag, longitudinal tining, diamond grinding, and even, to limited extent, transverse tining. This document is intended to serve as a guide that describes better practices for designing, constructing, and texturing quieter concrete pavements.
Resumo:
With the use of supplementary cementing materials (SCMs) in concrete mixtures, salt scaling tests such as ASTM C672 have been found to be overly aggressive and do correlate well with field scaling performance. The reasons for this are thought to be because at high replacement levels, SCM mixtures can take longer to set and to develop their properties: neither of these factors is taken into account in the standard laboratory finishing and curing procedures. As a result, these variables were studied as well as a modified scaling test, based on the Quebec BNQ scaling test that had shown promise in other research. The experimental research focused on the evaluation of three scaling resistance tests, including the ASTM C672 test with normal curing as well as an accelerated curing regime used by VDOT for ASTM C1202 rapid chloride permeability tests and now included as an option in ASTM C1202. As well, several variations on the proposed draft ASTM WK9367 deicer scaling resistance test, based on the Quebec Ministry of Transportation BNQ test method, were evaluated for concretes containing varying amounts of slag cement. A total of 16 concrete mixtures were studied using both high alkali cement and low alkali cement, Grade 100 slag and Grade 120 slag with 0, 20, 35 and 50 percent slag replacement by mass of total cementing materials. Vinsol resin was used as the primary air entrainer and Micro Air® was used in two replicate mixes for comparison. Based on the results of this study, a draft alternative test method to ASTM C762 is proposed.
Resumo:
The purpose of this study was to investigate the effect of cement paste quality on the concrete performance, particularly fresh properties, by changing the water-to-cementitious materials ratio (w/cm), type and dosage of supplementary cementitious materials (SCM), and airvoid system in binary and ternary mixtures. In this experimental program, a total matrix of 54 mixtures with w/cm of 0.40 and 0.45; target air content of 2%, 4%, and 8%; a fixed cementitious content of 600 pounds per cubic yard (pcy), and the incorporation of three types of SCMs at different dosages was prepared. The fine aggregate-to- total aggregate ratio was fixed at 0.42. Workability, rheology, air-void system, setting time, strength, Wenner Probe surface resistivity, and shrinkage were determined. The effects of paste variables on workability are more marked at the higher w/cm. The compressive strength is strongly influenced by the paste quality, dominated by w/cm and air content. Surface resistivity is improved by inclusion of Class F fly ash and slag cement, especially at later ages. Ternary mixtures performed in accordance with their ingredients. The data collected will be used to develop models that will be part of an innovative mix proportioning procedure.
Resumo:
This guide specification and commentary for concrete pavements presents current state-of-the art thinking with respect to materials and mixture selection, proportioning, and acceptance. This document takes into account the different environments, practices, and materials in use across the United States and allows optional inputs for local application. The following concrete pavement types are considered: jointed plain concrete pavement, the most commonly used pavement type and may be doweled or non-doweled at transverse joints; and continuously reinforced concrete pavement, typically constructed without any transverse joints, typically used for locations with high truck traffic loads and/or poor support conditions.
Resumo:
A guide specification and commentary have been prepared that lay out current state-of-the art thinking with respect to materials and mixture selection, proportioning, and acceptance. These documents take into account the different environments, practices, and materials in use across the US and allow optional inputs for local application.
Resumo:
For years, specifications have focused on the water to cement ratio (w/cm) and strength of concrete, despite the majority of the volume of a concrete mixture consisting of aggregate. An aggregate distribution of roughly 60% coarse aggregate and 40% fine aggregate, regardless of gradation and availability of aggregates, has been used as the norm for a concrete pavement mixture. Efforts to reduce the costs and improve sustainability of concrete mixtures have pushed owners to pay closer attention to mixtures with a well-graded aggregate particle distribution. In general, workability has many different variables that are independent of gradation, such as paste volume and viscosity, aggregate’s shape, and texture. A better understanding of how the properties of aggregates affect the workability of concrete is needed. The effects of aggregate characteristics on concrete properties, such as ability to be vibrated, strength, and resistivity, were investigated using mixtures in which the paste content and the w/cm were held constant. The results showed the different aggregate proportions, the maximum nominal aggregate sizes, and combinations of different aggregates all had an impact on the performance in the strength, slump, and box test.
Resumo:
Concrete will suffer frost damage when saturated and subjected to freezing temperatures. Frost-durable concrete can be produced if a specialized surfactant, also known as an air-entraining admixture (AEA), is added during mixing to stabilize microscopic air voids. Small and well-dispersed air voids are critical to produce frost-resistant concrete. Work completed by Klieger in 1952 found the minimum volume of air required to consistently ensure frost durability in a concrete mixture subjected to rapid freezing and thawing cycles. He suggested that frost durability was provided if 18 percent air was created in the paste. This is the basis of current practice despite the tests being conducted on materials that are no longer available using tests that are different from those in use today. Based on the data presented, it was found that a minimum air content of 3.5 percent in the concrete and 11.0 percent in the paste should yield concrete durable in the ASTM C 666 with modern AEAs and low or no lignosulfonate water reducers (WRs). Limited data suggests that mixtures with a higher dosage of lignosulfonate will need about 1 percent more air in the concrete or 3 percent more air in the paste for the materials and procedures used. A spacing factor of 0.008 in. was still found to be necessary to provide frost durability for the mixtures investigated.
Resumo:
Any transportation infrastructure system is inherently concerned with durability and performance issues. The proportioning and uniformity control of concrete mixtures are critical factors that directly affect the longevity and performance of the portland cement concrete pavement systems. At present, the only means available to monitor mix proportions of any given batch are to track batch tickets created at the batch plant. However, this does not take into account potential errors in loading materials into storage silos, calibration errors, and addition of water after dispatch. Therefore, there is a need for a rapid, cost-effective, and reliable field test that estimates the proportions of as-delivered concrete mixtures. In addition, performance based specifications will be more easily implemented if there is a way to readily demonstrate whether any given batch is similar to the proportions already accepted based on laboratory performance testing. The goal of the present research project is to investigate the potential use of a portable x-ray fluorescence (XRF) technique to assess the proportions of concrete mixtures as they are delivered. Tests were conducted on the raw materials, paste and mortar samples using a portable XRF device. There is a reasonable correlation between the actual and calculated mix proportions of the paste samples, but data on mortar samples was less reliable.