94 resultados para format
Resumo:
The IDPH Public Health Tracking Program is an excellent way to collect data related to various indicators for Iowans, but those looking for national statistics or data from other states may want to check out the Health Indicators Warehouse (healthindicators.gov). Run and maintained by the CDC’s National Center for Health Statistics, this site is a centralized source for national, state, and county data for a wide variety of indicators. The data is available to the public, and can be accessed either through the tables and charts directly on the website, or indicators can be downloaded to use in a spreadsheet. Once on the site, users are able to search for their desired data either by topic or geographic region. Filters can then be applied to the chosen field to narrow down the user’s search and obtain the preferred statistics. In addition, users are also able to search for indicators derived from state and federal health indicator initiatives: County Health Rankings, Community Health Status Indicators, Healthy People 2020, and CMS Community Indicators. The warehouse provides an overview of each indicator after the user has made their selection. This overview includes information on how the data was calculated and what characteristics are being represented. For example, percent of binge drinking adults is prefaced in the overview that data was based on the question: “Considering all types of alcoholic beverages, how many times during the past 30 days did you have [5 for men, 4 for women] or more drinks on an occasion?" Data is viewable either in the basic table format, chart format, or for some indicators it is possible to view it in terms of a national map. The Health Indicators Warehouse updates indicators as data becomes available, but the collection of years varies amongst the indicators. Nonetheless, this site is a useful resource to anyone looking for comparative indicators throughout the nation or is interested in one of the hundreds of indicators housed by the site. For more information or to check out what the warehouse has to offer visit: http://healthindicators.gov/
Resumo:
Researchers should continuously ask how to improve the models we rely on to make financial decisions in terms of the planning, design, construction, and maintenance of roadways. This project presents an alternative tool that will supplement local decision making but maintain a full appreciation of the complexity and sophistication of today’s regional model and local traffic impact study methodologies. This alternative method is tailored to the desires of local agencies, which requested a better, faster, and easier way to evaluate land uses and their impact on future traffic demands at the sub-area or project corridor levels. A particular emphasis was placed on scenario planning for currently undeveloped areas. The scenario planning tool was developed using actual land use and roadway information for the communities of Johnston and West Des Moines, Iowa. Both communities used the output from this process to make regular decisions regarding infrastructure investment, design, and land use planning. The City of Johnston case study included forecasting future traffic for the western portion of the city within a 2,600-acre area, which included 42 intersections. The City of West Des Moines case study included forecasting future traffic for the city’s western growth area covering over 30,000 acres and 331 intersections. Both studies included forecasting a.m. and p.m. peak-hour traffic volumes based upon a variety of different land use scenarios. The tool developed took goegraphic information system (GIS)-based parcel and roadway information, converted the data into a graphical spreadsheet tool, allowed the user to conduct trip generation, distribution, and assignment, and then to automatically convert the data into a Synchro roadway network which allows for capacity analysis and visualization. The operational delay outputs were converted back into a GIS thematic format for contrast and further scenario planning. This project has laid the groundwork for improving both planning and civil transportation decision making at the sub-regional, super-project level.
Resumo:
The IDPH Public Health Tracking Program is an excellent way to collect data related to various indicators for Iowans, but those looking for national statistics or data from other states may want to check out the Health Indicators Warehouse (healthindicators.gov). Run and maintained by the CDC’s National Center for Health Statistics, this site is a centralized source for national, state, and county data for a wide variety of indicators. The data is available to the public, and can be accessed either through the tables and charts directly on the website, or indicators can be downloaded to use in a spreadsheet. Once on the site, users are able to search for their desired data either by topic or geographic region. Filters can then be applied to the chosen field to narrow down the user’s search and obtain the preferred statistics. In addition, users are also able to search for indicators derived from state and federal health indicator initiatives: County Health Rankings, Community Health Status Indicators, Healthy People 2020, and CMS Community Indicators. The warehouse provides an overview of each indicator after the user has made their selection. This overview includes information on how the data was calculated and what characteristics are being represented. For example, percent of binge drinking adults is prefaced in the overview that data was based on the question: “Considering all types of alcoholic beverages, how many times during the past 30 days did you have [5 for men, 4 for women] or more drinks on an occasion?" Data is viewable either in the basic table format, chart format, or for some indicators it is possible to view it in terms of a national map. The Health Indicators Warehouse updates indicators as data becomes available, but the collection of years varies amongst the indicators. Nonetheless, this site is a useful resource to anyone looking for comparative indicators throughout the nation or is interested in one of the hundreds of indicators housed by the site. For more information or to check out what the warehouse has to offer visit: http://healthindicators.gov/
Resumo:
The IDPH Public Health Tracking Program is an excellent way to collect data related to various indicators for Iowans, but those looking for national statistics or data from other states may want to check out the Health Indicators Warehouse (healthindicators.gov). Run and maintained by the CDC’s National Center for Health Statistics, this site is a centralized source for national, state, and county data for a wide variety of indicators. The data is available to the public, and can be accessed either through the tables and charts directly on the website, or indicators can be downloaded to use in a spreadsheet. Once on the site, users are able to search for their desired data either by topic or geographic region. Filters can then be applied to the chosen field to narrow down the user’s search and obtain the preferred statistics. In addition, users are also able to search for indicators derived from state and federal health indicator initiatives: County Health Rankings, Community Health Status Indicators, Healthy People 2020, and CMS Community Indicators. The warehouse provides an overview of each indicator after the user has made their selection. This overview includes information on how the data was calculated and what characteristics are being represented. For example, percent of binge drinking adults is prefaced in the overview that data was based on the question: “Considering all types of alcoholic beverages, how many times during the past 30 days did you have [5 for men, 4 for women] or more drinks on an occasion?" Data is viewable either in the basic table format, chart format, or for some indicators it is possible to view it in terms of a national map. The Health Indicators Warehouse updates indicators as data becomes available, but the collection of years varies amongst the indicators. Nonetheless, this site is a useful resource to anyone looking for comparative indicators throughout the nation or is interested in one of the hundreds of indicators housed by the site. For more information or to check out what the warehouse has to offer visit: http://healthindicators.gov/
Resumo:
The IDPH Public Health Tracking Program is an excellent way to collect data related to various indicators for Iowans, but those looking for national statistics or data from other states may want to check out the Health Indicators Warehouse (healthindicators.gov). Run and maintained by the CDC’s National Center for Health Statistics, this site is a centralized source for national, state, and county data for a wide variety of indicators. The data is available to the public, and can be accessed either through the tables and charts directly on the website, or indicators can be downloaded to use in a spreadsheet. Once on the site, users are able to search for their desired data either by topic or geographic region. Filters can then be applied to the chosen field to narrow down the user’s search and obtain the preferred statistics. In addition, users are also able to search for indicators derived from state and federal health indicator initiatives: County Health Rankings, Community Health Status Indicators, Healthy People 2020, and CMS Community Indicators. The warehouse provides an overview of each indicator after the user has made their selection. This overview includes information on how the data was calculated and what characteristics are being represented. For example, percent of binge drinking adults is prefaced in the overview that data was based on the question: “Considering all types of alcoholic beverages, how many times during the past 30 days did you have [5 for men, 4 for women] or more drinks on an occasion?" Data is viewable either in the basic table format, chart format, or for some indicators it is possible to view it in terms of a national map. The Health Indicators Warehouse updates indicators as data becomes available, but the collection of years varies amongst the indicators. Nonetheless, this site is a useful resource to anyone looking for comparative indicators throughout the nation or is interested in one of the hundreds of indicators housed by the site. For more information or to check out what the warehouse has to offer visit: http://healthindicators.gov/
Resumo:
Most states, including Iowa, have a significant number of substandard bridges. This number will increase significantly unless some type of preventative maintenance is employed. Both the Iowa Department of Transportation and Iowa counties have successfully employed numerous maintenance, repair and rehabilitation (MR&R) strategies for correcting various types of deficiencies. However, successfully employed MR&R procedures are often not systematically documented or defined for those involved in bridge maintenance. This study addressed the need for a standard bridge MR&R manual for Iowa with emphasis for secondary road applications. As part of the study, bridge MR&R activities that are relevant to the state of Iowa have been systematically categorized into a manual, in a standardized format. Where pertinent, design guidelines have been presented. Material presented in this manual is divided into two major categories: 1) Repair and Rehabilitation of Bridge Superstructure Components, and 2) Repair and Rehabilitation of Bridge Substructure Components. There are multiple subcategories within both major categories that provide detailed information. Some of the detailed information includes step-by-step procedures for accomplishing MR&R activities, material specifications and detailed drawings where available. The source of information contained in the manual is public domain technical literature and information provided by Iowa County Engineers. A questionnaire was sent to all 99 counties in Iowa to solicit information and the research team personally solicited input from many Iowa counties as a follow-up to the questionnaire.
Resumo:
The IDPH Public Health Tracking Program is an excellent way to collect data related to various indicators for Iowans, but those looking for national statistics or data from other states may want to check out the Health Indicators Warehouse (healthindicators.gov). Run and maintained by the CDC’s National Center for Health Statistics, this site is a centralized source for national, state, and county data for a wide variety of indicators. The data is available to the public, and can be accessed either through the tables and charts directly on the website, or indicators can be downloaded to use in a spreadsheet. Once on the site, users are able to search for their desired data either by topic or geographic region. Filters can then be applied to the chosen field to narrow down the user’s search and obtain the preferred statistics. In addition, users are also able to search for indicators derived from state and federal health indicator initiatives: County Health Rankings, Community Health Status Indicators, Healthy People 2020, and CMS Community Indicators. The warehouse provides an overview of each indicator after the user has made their selection. This overview includes information on how the data was calculated and what characteristics are being represented. For example, percent of binge drinking adults is prefaced in the overview that data was based on the question: “Considering all types of alcoholic beverages, how many times during the past 30 days did you have [5 for men, 4 for women] or more drinks on an occasion?" Data is viewable either in the basic table format, chart format, or for some indicators it is possible to view it in terms of a national map. The Health Indicators Warehouse updates indicators as data becomes available, but the collection of years varies amongst the indicators. Nonetheless, this site is a useful resource to anyone looking for comparative indicators throughout the nation or is interested in one of the hundreds of indicators housed by the site. For more information or to check out what the warehouse has to offer visit: http://healthindicators.gov/
Resumo:
This Plan Reading Course was developed by the Department of Civil and Construction Engineering of Iowa State University under contract with the Iowa Highway Research Board, Project HR-324. It is intended to be an instructional tool for Iowa DOT, county and municipal employees within the state of Iowa. Under this contract, a previous Plan Reading Course, prepared for the Iowa State Highway Commission in 1965, has been completely revised using a new format, new plans, updated specifications, and new material. This course is a self-taught course consisting of two parts; Highway Plans, and Bridge and Culvert plans. Each part consists of a self-instruction book, a set of plans, a question booklet, and an answer booklet. This is the self-instruction book for the Bridge and Culvert Plans part of the course. The example structures included in this part of the course are a prestressed concrete beam bridge and a reinforced concrete box culvert.
Resumo:
The report describes the state of the art video equipment used and experiences gained from the 6,800 mile field test. The first objective of this project was to determine if laser disc equipment could capture and store usable roadway images while operating in a mobile environment. The second objective was to evaluate methods of using optical disc storage and retrieval features to enhance highway planning and design function. Several highway departments have attempted to use video technology to replace the traditional 16 and 35 mm film format used in photologging. These attempts have met with limited success because of the distortion caused by video technology not being capable of dealing with highway speeds. The distortion has caused many highway signs to be unreadable and, therefore, clients have labeled the technology unusable. Two methods of using optical laser disc storage and retrieval have been successfully demonstrated by Wisconsin and Connecticut Departments of Transportation. Each method provides instantaneous retrieval and linking of images with other information. However, both methods gather the images using 35 mm film techniques. The 35 mm film image is then transferred to laser disc. Eliminating the film conversion to laser disc has potential for saving $4 to $5 per logging mile. In addition to a cost savings, the image would be available immediately as opposed to delays caused by film developing and transferring to laser disc. In June and November of 1986 Iowa DOT staff and cooperating equipment suppliers demonstrated the concept of direct image capture. The results from these tests were promising and an FHWA Demonstration program established. Since 1986 technology advancements have been incorporated into the design that further improve the image quality originally demonstrated.
Resumo:
The proposed Federal Highway Administration (FHWA) amendments to the Manual of Uniform Traffic Control Devices (MUTCD) will change the way local agencies manage their pavement markings and places a focus on pavement marking quality and management methods. This research effort demonstrates how a pavement marking maintenance method could be developed and used at the local agency level. The report addresses the common problems faced by agencies in achieving good pavement marking quality and provides recommendations specific towards these problems in terms of assessing pavement marking needs, selecting pavement marking materials, contracting out pavement marking services, measuring and monitoring performance, and in developing management tools to visualize pavement marking needs in a GIS format. The research includes five case studies, three counties and two cities, where retroreflectivity was measured over a spring and fall season and then mapped to evaluate pavement marking performance and needs. The research also includes over 35 field demonstrations (installation and monitoring) of both longitudinal and transverse durable markings in a variety of local agency settings all within an intense snow plow state.
Resumo:
The current version of the SUDAS Specifications will be revised to accommodate the DOT’s utilization of SUDAS. The revisions to the SUDAS Specifications will be based upon the recommendations from Phase 1. In some instances, the recommendations will require reorganization of portions of the SUDAS Specifications. Upon incorporation of the Phase 1 recommendations, each applicable Division of the SUDAS Specifications will be updated into the active-imperative style, utilizing the 3- part specification format currently utilized by SUDAS.
Resumo:
The current version of the SUDAS Specifications will be revised to accommodate the DOT’s utilization of SUDAS. The revisions to the SUDAS Specifications will be based upon the recommendations from Phase 1. In some instances, the recommendations will require reorganization of portions of the SUDAS Specifications. Upon incorporation of the Phase 1 recommendations, each applicable Division of the SUDAS Specifications will be updated into the active-imperative style, utilizing the 3- part specification format currently utilized by SUDAS.
Resumo:
Iowa state, county, and city engineering offices expend considerable effort monitoring the state’s approximately 25,000 bridges, most of which span small waterways. In fact, the need for monitoring is actually greater for bridges over small waterways because scour processes are exacerbated by the close proximity of abutments, piers, channel banks, approach embankments, and other local obstructions. The bridges are customarily inspected biennially by the county’s road department bridge inspectors. It is extremely time consuming and difficult to obtain consistent, reliable, and timely information on bridge-waterway conditions for so many bridges. Moreover, the current approaches to gather survey information is not uniform, complete, and quantitative. The methodology and associated software (DIGIMAP) developed through the present project enable a non-intrusive means to conduct fast, efficient, and accurate inspection of the waterways in the vicinity of the bridges and culverts using one technique. The technique combines algorithms image of registration and velocimetry using images acquired with conventional devices at the inspection site. The comparison of the current bridge inspection and monitoring methods with the DIGIMAP methodology enables to conclude that the new procedure assembles quantitative information on the waterway hydrodynamic and morphologic features with considerable reduced effort, time, and cost. It also improves the safety of the bridge and culvert inspections conducted during normal and extreme hydrologic events. The data and information are recorded in a digital format, enabling immediate and convenient tracking of the waterway changes over short or long time intervals.
Resumo:
The federal government is aggressively promoting biofuels as an answer to global climate change and dependence on imported sources of energy. Iowa has quickly become a leader in the bioeconomy and wind energy production, but meeting the United States Department of Energy’s goal having 20% of U.S. transportation fuels come from biologically based sources by 2030 will require a dramatic increase in ethanol and biodiesel production and distribution. At the same time, much of Iowa’s rural transportation infrastructure is near or beyond its original design life. As Iowa’s rural roadway structures, pavements, and unpaved roadways become structurally deficient or functionally obsolete, public sector maintenance and rehabilitation costs rapidly increase. More importantly, costs to move all farm products will rapidly increase if infrastructure components are allowed to fail; longer hauls, slower turnaround times, and smaller loads result. When these results occur on a large scale, Iowa will start to lose its economic competitive edge in the rapidly developing bioeconomy. The primary objective of this study was to document the current physical and fiscal impacts of Iowa’s existing biofuels and wind power industries. A four-county cluster in north-central Iowa and a two-county cluster in southeast Iowa were identified through a local agency survey as having a large number of diverse facilities and were selected for the traffic and physical impact analysis. The research team investigated the large truck traffic patterns on Iowa’s secondary and local roads from 2002 to 2008 and associated those with the pavement condition and county maintenance expenditures. The impacts were quantified to the extent possible and visualized using geographic information system (GIS) tools. In addition, a traffic and fiscal assessment tool was developed to understand the impact of the development of the biofuels on Iowa’s secondary road system. Recommended changes in public policies relating to the local government and to the administration of those policies included standardizing the reporting and format of all county expenditures, conducting regular pavement evaluations on a county’s system, cooperating and communicating with cities (adjacent to a plant site), considering utilization of tax increment financing (TIF) districts as a short-term tool to produce revenues, and considering alternative ways to tax the industry.
Resumo:
The goal of this work was to move structural health monitoring (SHM) one step closer to being ready for mainstream use by the Iowa Department of Transportation (DOT) Office of Bridges and Structures. To meet this goal, the objective of this project was to implement a pilot multi-sensor continuous monitoring system on the Iowa Falls Arch Bridge such that autonomous data analysis, storage, and retrieval can be demonstrated. The challenge with this work was to develop the open channels for communication, coordination, and cooperation of various Iowa DOT offices that could make use of the data. In a way, the end product was to be something akin to a control system that would allow for real-time evaluation of the operational condition of a monitored bridge. Development and finalization of general hardware and software components for a bridge SHM system were investigated and completed. This development and finalization was framed around the demonstration installation on the Iowa Falls Arch Bridge. The hardware system focused on using off-the-shelf sensors that could be read in either “fast” or “slow” modes depending on the desired monitoring metric. As hoped, the installed system operated with very few problems. In terms of communications—in part due to the anticipated installation on the I-74 bridge over the Mississippi River—a hardline digital subscriber line (DSL) internet connection and grid power were used. During operation, this system would transmit data to a central server location where the data would be processed and then archived for future retrieval and use. The pilot monitoring system was developed for general performance evaluation purposes (construction, structural, environmental, etc.) such that it could be easily adapted to the Iowa DOT’s bridges and other monitoring needs. The system was developed allowing easy access to near real-time data in a format usable to Iowa DOT engineers.