117 resultados para Watershed transform
Resumo:
The Lost Island Lake watershed is located in the prairie pothole region, a region dotted with glacial wetlands and shallow lakes. At 1,180 acres, Lost Island Lake is the state's fifth largest natural lake and its watershed is comprised of nearly 1,000 acres of wetland habitat, including Iowa 's largest natural wetland – Barringer Slough. Unfortunately, Lost Island and its associated wetlands are not functioning to their fullest ecological and water quality potential. In 2002 and 2004, Lost Island Lake was categorized as '·impaired'" on Iowa's Impaired Waters List. Frequent algal blooms and suspended solids drastically increase turbidity levels resulting in its impairment. To investigate these concerns, a two-year study and resulting Water Quality Improvement Plan were completed. The water quality study identified an overabundance of non-native common carp (Cyprinus carpio) in the lake and its surrounding wetlands as a primary cause of impairment. The goal of the Lost Island Lake Watershed Enhancement Project is to restore ecological health to Lost Island Lake and its intricate watershed resulting in improved water quality and a diverse native plant and wildlife community. The purpose of this grant is to obtain funding for the construction of two combination fish barriers and water control structures placed at key locations in the watershed within the Blue Wing Marsh complex. Construction of the fish barriers and water control structures would aid restoration efforts by preventing spawning common carp from entering wetlands in the watershed and establishing the ability to manage water levels in large wetland areas. Water level management is crucial in wetland health and exotic fish control. These two structures are part of a larger construction project that involves a total of four combination fish barriers and water control structures and one additional fish barrier. The entire Lost Island Lake Watershed Enhancement Project is a multi-year project, but the construction phase for the fish barriers and water control structures will be completed before December 31, 2011.
Resumo:
Brushy Creek is a tributary of the Raccoon River, which is a regular source of drinking water for over 400,000 Iowans. Regular monitoring by Des Moines Water Works (DMWW) and Agriculture’s Clean Water Alliance (ACWA) over the last eight years has shown the stream to be highly impaired for coliform bacteria and nitrate. Both Brushy Creek and the Raccoon River are on the 303(d) impaired waterbody list. A December 2005 fish kill in Brushy Creek resulted in administrative actions against seven livestock producers. Several open feed lots exist in the watershed. The community of Roselle (in the Brushy Creek watershed) has been identified by IDNR as unsewered, and many dwellings throughout the watershed discharge untreated human waste. No Watershed Improvement Association (WIA) exists in this sparsely-populated area. This outcome-based project will: • Enhance nutrient and manure management to reduce agricultural inputs to the stream. • Assess the amount of human waste reaching the stream from Roselle. • Engage and inform local residents so a WIA can be formed. • Monitor performance through a rigorous water and soil testing program. This project embraces a concept of participation from all levels of government, commodity organizations, and the private sector. The largest drinking water utility in the state will lead and administer this effort. The participating parties will work to establish a functioning WIA so that progress achieved through this project will be robust and long-lasting. The participants believe this will be the most effective approach to correct the situation, and will serve as a model for other problem watersheds throughout the state.
Resumo:
The proposed project will include the construction of a sanitary sewer collection system and a community gravel filter wastewater treatment system in the unsewered community of Maple River Junction in Carroll County. The system will be built to include approximately 1,150 feet of 4-inch sanitary sewer main, 3,540 feet of 4-inch service main an approximately 35 septic tanks. Some existing 4-inch PVC sewer piping as well as existing septic tanks in good condition will continue to be used in order to control capital costs.
Resumo:
The urban portion of the Kettle Creek Watershed is experiencing severe bank and bed erosion due to unchecked stormwater runoff and a steep stream slope. The Kettle Creek Urban Watershed Improvement Project will reduce sediment input to the stream by stabilizing the steam bed with rock-riffle stream stabilization structures and stream bank improvements at select locations. Other components of the watershed are being addressed for excess sediment loads including the agricultural portion by constructing sediment detention basins, and the urban stormwater component by separating the existing combined sanitary and stormwater systems. The urban stream erosion factor represents the weak link in the current watershed impairment. The benefits of the all the watershed improvements components will be realized by all the residents of Kettle Creek Watershed as well as the citizens of Ottumwa.
Resumo:
Competine Creek is an 8,653 acre subwatershed of Whitebreast Creek which drains directly to Lake Red Rock. The Marion Soil and Water Conservation District has prioritized water quality protection efforts within Competine Creek subwatershed because 1) this watershed has been identified as a significant contributor of sediment, nutrients, and bacteria to Competine Creek and Lake Red Rock, 2) the watershed provides unique outreach opportunities due to its unique rural and urban interface, and 3) by using a targeted approach to address water quality, the likelihood of successfully demonstrating water quality improvements is high due to its manageable size. The specific goals of this proposal to WIRB (Phase I) are to: 1) reduce sediment and nutrient delivery by 1787 tons and 2144 lbs by installing conservation practices on high priority agricultural land; and 2) install urban conservation practices that reduce the volume of peak flow, improve streambank stability, and promote infiltration of stormwater runoff before it enters Competine Creek. The Marion SWCD has assembled a unique group of partners and secured funding from multiple sources to implement this project.
Resumo:
Phase 2 of the Saylor Creek Improvement Project is focused on channel restoration. The existing stream channel is generally incised, running through areas primarily covered with heavy trees, brush and weeds. The ravine ranges from 6 to 20 feet deep through the corridor with very steep slopes in several areas. In two areas storm outlets are undercut or suspended above the channel. Tall undercut, eroded banks exist along several of the outside bends. Sediment deposition on the inside bends limits the cross-section of the channel, increasing flow velocity and forcing this faster flow toward the eroded outside bank. A wide array of practices will need to be implemented to address channel erosion. Improvements will be specifically tailored to address problems observed at each bend. The result will be a channel with a more natural appearance, and reduced use of hard armor and revetment. Some sections will require minimal grading with removal of underbrush for improved maintenance access and more sun exposure, better allowing deep rooted plants and flowers to establish to provide further erosion protection. Straight sections with steep banks will require grading to pull back slopes, increasing the creek's capacity to convey storm flows at slower velocities. Sections with sharp bends will require slope pull back and armor protection. A constructed wetland will collect and treat runoff from a small sub-watershed, before being discharged into the main tributary.
Resumo:
The Muchakinock Creek Watershed Project began in February of 2005 to treat upland soil erosion in the creek that has lead to a 303(d) impairment. The Mahaska SWCD is currently administering this cost-share program to promote terraces, basins and grade stabilization structures. The District is now seeking funding from WIRB to treat specific abandoned mine lands in the Muchakinock Creek Watershed. These areas contribute sediment to the creek at levels second only to agricultural lands as well as acid mine drainage from open pits mines that have been left to decay across the county. The WIRB funding would be used to compliment Federal Abandoned Mine Land (AML) funding in the reclamation of these areas.
Resumo:
The Rathbun Land and Water Alliance and partners have implemented a uniquely effective approach to water quality protection through the Rathbun Lake Special Project. This approach is achieving a significant reduction in the sediment and phosphorus that impair water quality in Rathbun Lake and its tributaries as a result of the targeted application of best management practices (BMPs) for priority land in the watershed. This project application proposes to assist landowners to apply BMPs that will reduce sediment and phosphorus delivery from priority land in four targeted sub-watersheds as part of the Rathbun Lake Special Project. Features of this project are: (1) use of geographic information system (GIS) analysis to identify priority land that requires BMPs; (2) assistance for landowners to apply BMPs on 5,100 acres that will reduce the annual delivery of sediment by 8,130 tons and phosphorus by 35,980 pounds; (3) evaluation of the benefits from BMP application using GIS analysis and water quality monitoring; and (4) watershed outreach activities that encourage landowners to apply BMPs for priority land to protect water quality.
Resumo:
This project would target Norfolk Creek Subwatershed for land treatment practices. The Norfolk Creek Subwatershed is 14,035 acres located southwest of Waukon. The landscape is characterized by rugged karst topography and is marked with hundreds of sinkholes, providing direct drainage into the water table, affecting wells, springs, and community water sources. The surface groundwater runoff from this karst landscape eventually flows into the Yellow River. The potential point and non-point pollution sources are complicated and expensive to resolve. Extensive water quality monitoring has been completed on Norfolk Creek and has tested high in many parameters. We hope that with the upland treatment included in this grant request, terraces, grade stabilization structures, sediment control basins, and livestock manure management systems, these will improve. Continued water quality sampling will monitor this. This application has been reviewed and approved by the Allamakee County Soil and Water Conservation District Commissioners.
Resumo:
With the Saylor Creek Watershed Improvement Project, Iowa Heartland RC&D and other area stakeholders have an opportunity to display how "best management practices" (BMPs) can reduce storm water runoff and improve the quality of that runoff in an urban setting. Conservation design is a uew approach to storm water management that addresses the negative impacts of storm water runoff and turns them into a positive. The master plan for the Prairie Trail development surrounding the watershed project will incorporate bioretention cells, bioswales, buffer strips, rain gardens, as well as native plant landscaping to slow storm water runoff and naturally clean sediment out of the water before it reaches Saylor Creek. In addition to conservation design elements, the project will utilize storm water detention ponds and creek bed restoration to develop a complete storm water "treatment train" system within Prairie Trail. The extensive use of conservation storm water management for Prairie Trail is unique for urban development in Iowa.
Resumo:
Leisure Lake is approximately a 67 acre water body located in northwest Jackson County with a 2,681 acre drainage area. The watershed including the lake is a tributary to Lytle Creek which drains into the North Fork of the Maquoketa River. Portions of the Lytle Creek and North Fork Maquoketa River are on the 303(d) impaired waterbodies list. The project area includes a community of 370 residential properties and one business that currently has no central wastewater collection and treatment system. The purpose of this project is to construct a wastewater collection and treatment facility to improve water quality in the creek and river. The project will eliminate the non-permitted septic systems and construct a new wastewater system to properly treat wastewater prior to its discharge into the waterways.
Resumo:
Mills County proposes to reduce the identified impairment of the watershed, Keg Creek, by eliminating one of the main reasons for the impairment - non-conforming, on-site septic tanks that allow effluent to drain into the creek from the unincorporated community of Mineola. This has been identified by the county as a major priority. Therefore, the county proposes to construct a collection system and lagoon treatment facility, which would eliminate effluent from draining into Keg Creek. Regional Water will own, operate, and manage the collection and treatment systems in Mineola for Mills County.
Resumo:
Upper Catfish Creek is located in a 9,300-acre watershed that flows through two significant natural resources, Swiss Valley Park and Swiss Valley Nature Preserves, one of the largest nature preserves in the Midwest. According to DNR’s 2002 305(d) report, that portion of the creek within the park and preserve is classified as a Class B(CW) cold water stream of which a portion has naturally reproducing trout (one of only 30 in the state of Iowa with this capability). Urban sprawl is a real threat to the Upper Catfish Creek Watershed. Currently, 10% of the watershed is residential, but 27% is zoned residential or commercial. The watershed is near Dubuque city limits but the jurisdiction is in the county. Differing criteria for land development between city and county jurisdictions further entices developers to build in outlying areas. County leaders agree there is more that needs to be done and will work with municipalities on uniformity of regulations and follow-up measures. We propose to set up key urban conservation practice models that will address storm water runoff and water quality which can be learned about and viewed by city and county officials, engineers, developers, etc. This would be part of a larger initiative including an educational campaign, inter-jurisdictional planning, the development of a land use GIS database, and agricultural conservation practices. The successes coming out of and learned about this watershed will serve as a model to spread county-wide.
Resumo:
Lower Coldwater and Palmer Creeks in Butler and Floyd counties are subwatersheds of the Cedar River, which provides drinking water to Cedar Rapids, IA. The increasing concentration of nitrate+nitrate in the river is of concern to the Cedar Rapids water utility, and IDNR snapshot monitoring shows Coldwater and Palmer to be significant potential sources (above the 90th percentile for subwatersheds monitored). Both creeks are also on the Iowa Section 303(d) list of impaired waters (aquatic life). Citizens of these predominantly agricultural watersheds organized the Coldwater-Palmer Watershed Improvement Association to deal proactively with nonpoint source pollutants from crop and livestock operations through a performance-based environmental management program. The locally-adapted program implemented by the Coldwater-Palmer watershed council rewards participants for environmental accomplishments - soil quality improvement and nutrient source reduction as measured by accepted, scientifically-based tests and models. Most of the locallyappropriate BMPs used to improve performance are undertaken voluntarily at participants' initiative. WIRB funds will be combined with funding from the Iowa Com Growers Association and significant in-kind support from the Cedar River Watershed Monitoring Coalition, Iowa State University Extension and other partners. The project will result in sustainable reduction in nutrient loading achieved with voluntary participation of a majority of watershed farm operators.
Resumo:
This watershed project will provide technical and financial assistance to improve surface and groundwater quality. This will be accomplished by installing an alternative tile outlet for 3 agricultural drainage wells (ADWs) and providing incentives to implement nutrient and pest management.