61 resultados para Railroad track settlement
Resumo:
Two specialty cements are currently being marketed as a way to achieve portland cement concrete pavement opening strengths at less than 12 hours after placement. The cements are Pyrament from Pyrament/Lone Star Industries of Houston, Texas and Ideal Regulated-Set (RS) Portland Cement from Ideal Cement Company of Saratoga, Arkansas. The objective of the study was to evaluate the strength gain and durability of concrete produced with Pyrament and Ideal RS cement as Fast Track concrete. Mixes with 610 lb/cu yd (362 kg/cu m) cement were made and tested. Both Pyrament and Ideal RS are capable of producing pavement opening times less than 12 hours. Recent changes to Ideal RS cement have produced concrete flexural strengths of 550 psi (3792 kPa) at 4 hours in Iowa tests. Freeze/thaw durability of the concrete was not adversely affected by using either cement.
Resumo:
There are projects where opening the pavement to traffic in less than the 5 to 7 days is needed, but an 8 to 12 hour opening time is not necessary. The study examined fast track concrete with Type I cement and admixtures. The variables studied were: (1) cure temperature, (2) cement brand, (3) accelerators, and (4) water reducers. A standard water reducer and curing blankets appear to be effective at producing a 24 hour to 36 hour opening strength. An accelerator and/or high range water reducer may produce opening strength in 12 to 24 hours. Calcium chloride was most effective at achieving high-early strength.
Resumo:
In May 1950 a proposal for a research project was submitted to the newly formed Iowa Highway Research Board for consideration and action. This project, designated RPSl by the Board, encompassed the study, development, preparation of preliminary plans and specifications for the construction of a wheel track to be used in the accelerated testing of highway pavements. The device envisioned in the proposal was a circular track about seventy-five feet in diameter equipped with a suitable automobile-tired device to test pavements about five feet in width laid into the track under regular construction practices by small scale construction equipment. The Board, upon review, revised and expanded the basic concepts of the project. The project as revised by the Board included a study of the feasibility of developing, constructing and operating an accelerated testing track in which pavements, bases and subgrades may be laid one full lane, or at least ten feet, in width by full size construction equipment in conformity with usual construction practices. The pavements so laid are to be subjected, during test, to conditions as nearly simulating actual traffic as possible.
Resumo:
Pavements have been overlaid with thin bonded portland cement concrete (PCC) for several years. These projects have had traffic detoured for a period of 5-10 days. These detours are unacceptable to the traveling public and result in severe criticism. The use of thin bonded fast track overlay was promoted to allow a thin bonded PCC overlay with minimal disruption of local traffic. This project demonstrated the concept of using one lane of the roadway to maintain traffic while the overlay was placed on the other and then with the rapid strength gain of the fast track concrete, the construction and local traffic is maintained on the newly placed, thin bonded overlay. The goals of this project were: 1. Traffic usage immediately after placement and finishing. 2. Reduce traffic disruption on a single lane to less than 5 hours. 3. Reduce traffic disruption on a given section of two-lane roadway to less than 2 days. 4. The procedure must be economically viable and competitive with existing alternatives. 5. Design life for new construction equivalent to or in excess of conventional pavements. 6. A 20 year minimum design life for rehabilitated pavements.
Resumo:
Two lanes of a major four-lane arterial street in Cedar Rapids, Iowa, needed reconstruction. Because of the traffic volume and the detour problem, closure of the intersections, even for 1 day was not feasible. Use of Fast Track concrete paving on the mainline portion of the project permitted achievement of the opening strength of 400 psi in less than 12 hr. Fast Track II, used for the intersections, achieved the opening strength of 350 psi in 6 to 7 hr. Flexural and compression specimens of two sections each in the Fast Track and Fast Track II sections were subjected to pulse velocity tests. Maturity curves were developed by monitoring the temperatures. Correlations were performed between the pulse velocity and flexural strength and between the maturity and flexural strength. The project established the feasibility of using Fast Track II to construct portland cement concrete pavement at night and opening the roadway to traffic the next day.
Resumo:
Report on a review of State employee grievance processes, settlement agreements entered into by the State and payments made during the period July 1, 2010 through June 30, 2014
Resumo:
Clinton, Iowa, one of the first railroad crossings over the Mississippi River, has been a major gateway to the Great Plains and beyond since 1859. For more than 100 years, the railroads employed thousands and supported a good quality of life in Clinton. Railroad activities peaked both nationally and in Clinton during and after World War II. By the 1990s, the Union Pacific was redeveloping their railroad facilities adjacent to Camanche Avenue and U.S. Highway 30. The legacy of the railroad in Clinton has been preserved in this study.
Resumo:
The goal of this project was to provide an objective methodology to support public agencies and railroads in making decisions related to consolidation of at-grade rail-highway crossings. The project team developed a weighted-index method and accompanying Microsoft Excel spreadsheet based tool to help evaluate and prioritize all public highway-rail grade crossings systematically from a possible consolidation impact perspective. Factors identified by stakeholders as critical were traffic volume, heavy-truck traffic volume, proximity to emergency medical services, proximity to schools, road system, and out-of-distance travel. Given the inherent differences between urban and rural locations, factors were considered, and weighted, differently, based on crossing location. Application of a weighted-index method allowed for all factors of interest to be included and for these factors to be ranked independently, as well as weighted according to stakeholder priorities, to create a single index. If priorities change, this approach also allows for factors and weights to be adjusted. The prioritization generated by this approach may be used to convey the need and opportunity for crossing consolidation to decision makers and stakeholders. It may also be used to quickly investigate the feasibility of a possible consolidation. Independently computed crossing risk and relative impact of consolidation may be integrated and compared to develop the most appropriate treatment strategies or alternatives for a highway-rail grade crossing. A crossing with limited- or low-consolidation impact but a high safety risk may be a prime candidate for consolidation. Similarly, a crossing with potentially high-consolidation impact as well as high risk may be an excellent candidate for crossing improvements or grade separation. The results of the highway-rail grade crossing prioritization represent a consistent and quantitative, yet preliminary, assessment. The results may serve as the foundation for more rigorous or detailed analysis and feasibility studies. Other pertinent site-specific factors, such as safety, maintenance costs, economic impacts, and location-specific access and characteristics should be considered.
Resumo:
The use of Railroad Flatcars (RRFCs) as the superstructure on low-volume county bridges has been investigated in a research project conducted by the Bridge Engineering Center at Iowa State University. These bridges enable county engineers to replace old, inadequate county bridge superstructures for less than half the cost and in a shorter construction time than required for a conventional bridge. To illustrate their constructability, adequacy, and economy, two RRFC demonstration bridges were designed, constructed, and tested: one in Buchanan County and the other in Winnebago County. The Buchanan County Bridge was constructed as a single span with 56-ft-long flatcars supported at their ends by new, concrete abutments. The use of concrete in the substructure allowed for an integral abutment at one end of the bridge with an expansion joint at the other end. Reinforced concrete beams (serving as longitudinal connections between the three adjacent flatcars) were installed to distribute live loads among the RRFCs. Guardrails and an asphalt milling driving surface completed the bridge. The Winnebago County Bridge was constructed using 89-ft-long flatcars. Preliminary calculations determined that they were not adequate to span 89 ft as a simple span. Therefore, the flatcars were supported by new, steel-capped piers and abutments at the RRFCs' bolsters and ends, resulting in a 66-ft main span and two 10-ft end spans. Due to the RRFC geometry, the longitudinal connections between adjacent RRFCs were inadequate to support significant loads; therefore, transverse, recycled timber planks were utilized to effectively distribute live loads to all three RRFCs. A gravel driving surface was placed on top of the timber planks, and a guardrail system was installed to complete the bridge. Bridge behavior predicted by grillage models for each bridge was validated by strain and deflection data from field tests; it was found that the engineered RRFC bridges have live load stresses significantly below the AASHTO Bridge Design Specification limits. To assist in future RRFC bridge projects, RRFC selection criteria were established for visual inspection and selection of structurally adequate RRFCs. In addition, design recommendations have been developed to simplify live load distribution calculations for the design of the bridges. Based on the results of this research, it has been determined that through proper RRFC selection, construction, and engineering, RRFC bridges are a viable, economic replacement system for low-volume road bridges.
Resumo:
Based on the conclusions of IHRB Project TR-444, Demonstration Project Using Railroad Flat Car Bridges for Low Volume Road Bridges, additional research on the use of RRFC bridges was undertaken. This portion of the project investigated the following: (1) Different design and rating procedures; (2) Additional single span configurations plus multiple span configurations; (3) Different mechanisms for connecting adjacent RRFCs and the resulting lateral load distribution factors; (4) Sheet pile abutments; and (5) Behavior RRFCs that had been strengthened so that they could be used on existing abutments. A total of eight RRFC bridges were tested (five single span bridges, two two-span bridges, and one three-span bridge). Based on the results of this study a simplified design and rating procedure has been developed for the economical replacement bridge alternative. In Volume 1, this volume, the results from the testing of four single span RRFC bridges are presented, while in Volume 2 the results from the testing of the strengthened single span bridge plus the three multiple span bridges are presented.
Resumo:
Based on the conclusions of IHRB Project TR-444, Demonstration Project Using Railroad Flat Car Bridges for Low Volume Road Bridges, additional research on the use of RRFC bridges was undertaken. This portion of the project investigated the following: (1) Different design and rating procedures; (2) Additional single span configurations plus multiple span configurations; (3) Different mechanisms for connecting adjacent RRFCs and the resulting lateral load distribution factors; (4) Sheet pile abutments; and (5) Behavior RRFCs that had been strengthened so that they could be used on existing abutments. A total of eight RRFC bridges were tested (five single span bridges, two two-span bridges, and one three-span bridge). Based on the results of this study a simplified design and rating procedure has been developed for the economical replacement bridge alternative. In Volume 1, the results from the testing of four single span RRFC bridges are presented, while in Volume 2,this volume, the results from the testing of the strengthened single span bridge plus the three multiple span bridges are presented.
Resumo:
Trench maintenance problems are caused by improper backfill placement and construction procedures. This report is part of a multiphase research project that aims to improve long-term performance of utility cut restoration trenches. The goal of this research is to improve pavement patch life and reduce maintenance of the repaired areas. The objectives were to use field-testing data, laboratory-testing data, and long-term monitoring (elevation survey and falling weight deflectometer testing) to suggest and modify recommendations from Phase I and to identify the principles of trench subsurface settlement and load distribution in utility cut restoration areas by using instrumented trenches. The objectives were accomplished by monitoring local agency utility construction from Phase I, constructing and monitoring the recommended trenches from Phase I, and instrumenting trenches to monitor changes in temperature, pressure, moisture content, and settlement as a function of time to determine the influences of seasonal changes on the utility cut performance.
Resumo:
Contains information about the staff and athletes of the Iowa Hawkeyes Track and Field team for the 1984/85 academic school year. Also includes past year's results, team records, quick facts and schedule.
Resumo:
Two lanes of a major four lane arterial street needed to be reconstructed in Cedar Rapids, Iowa. The traffic volumes and difficulty of detouring the traffic necessitated closure for construction be held to an absolute minimum. Closure of the intersections, even for one day, was not politically feasible. Therefore, Fast Track and Fast Track II was specified for the project. Fast Track concrete paving has been used successfully in Iowa since 1986. The mainline portion of the project was specified to be Fast Track and achieved the opening strength of 400 psi in less than twelve hours. The intersections were allowed to be closed between 6 PM and 6 AM. This could occur twice - once to remove the old pavement and place the base and temporary surface and the second time to pave and cure the new concrete. The contractor was able to meet these restrictions. The Fast Track II used in the intersections achieved the opening strength of 350 psi in six to seven hours. Two test sections were selected in the mainline Fast Track and two intersections were chosen to test the Fast Tract II. Both flexural and compression specimens were tested. Pulse velocity tests were conducted on the pavement and test specimens. Maturity curves were developed through monitoring of the temperatures. Correlations were performed between the maturity and pulse velocity and the flexural strengths. The project was successful in establishing the feasibility of construction at night, with no disruption of traffic in the daytime, using fast Track II. Both the Fast Track II pavements were performing well four years after construction.
Resumo:
The Railroad Avenue groundwater contamination site (the site) is in West Des Moines, Polk County, Iowa. Located on approximately 120 acres. The site comprises mixed residential, industrial and commercial properties. Underneath the site, chlorinated volatile organic compounds (VOCs) have contaminatcd the shallow (i.e., 30-50 feet deep) groundwater. These compounds have compromised several shallow wells within the West Des Moines water works system. A contamination source, however, has not yet been identified. In 1993, routine water analysis by the City of West Des Moines identified 1, 2 cis-dichlorocthylcne (1, 2 cis-DCE) at a concentration of 1.2 μg/L (micrograms) per liter of water) in the water supply. Subsequently. several shallow municipal wells were found to be contaminated by VOCs, including 1. 2 cis-DCE, trichloroethylene (TCE), tetrachloroethylene (PCE) and benzene. Five of these wells have been taken out of service. Because of the impact on the West Des Moines water supply, the U.S. Environmental Protection Agency (USEPA) has assigned the site to the National Priorities List. Surface water und sediment at the site have not been impacted by the VOCs. Testing for VOCs in surface soils has not revealed any significant VOC contamination. Subsurface soils -- generally 8 feet or greater in depth -- are contaminated with VOCs, but at levels which should not present a health hazard. The past, present, and future health hazard category chosen for this site is no apparent public health hazard. This category is used when exposure to toxins might be occurring or might have occurrcd in the past, but at levels below any known health hazard. Analysis of available environmental data has not revealed that residental or commercial water customers are or have been exposed to VOCs at concentrations that might cause any adverse health effects.