97 resultados para 1988-1994
Resumo:
The objective of this research project was to evaluate field application results and determine whether the Earth-Gard mat made from recycled material would successfully control erosion and allow vegetation to establish in ditch bottoms and steep slopes. The research would also help determine how steep a grade in the ditch bottoms can be protected from rill and gully erosion and how steep and long a backslope or foreslope can be protected from sheet and rill erosion by the recycled material and allow establishment of vegetation. The Earth-Gard gave satisfactory performance on areas with limited drainage and gradual slopes. Earth-Gard had a longevity of only six months. It was eroded away when used on areas with greater flow or steeper slopes.
Resumo:
Stream channel erosion in the deep loess soils region of western Iowa causes severe damage along hundreds of miles of streams in twenty-two counties. The goal of this project was to develop information, systems, and procedures for use in making resource allocation decisions related to the protection of transportation facilities and farmland from damages caused by stream channel erosion. Section one of this report provides an introduction. Section two presents an assessment of stream channel conditions from aerial and field reconnaissance conducted in 1993 and 1994 and a classification of the streams based on a six stage model of stream channel evolution. A Geographic Information System is discussed that has been developed to store and analyze data on the stream conditions and affected infrastructure and assist in the planning of stabilization measures. Section three presents an evaluation of two methods for predicting the extent of channel degradation. Section four presents an estimate of costs associated with damages from stream channel erosion since the time of channelization until 1992. Damage to highway bridges represent the highest costs associated with channel erosion, followed by railroad bridges and right-of-way; loss of agricultural land represents the third highest cost. An estimate of costs associated with future channel erosion on western Iowa streams is also presented in section four. Section four also presents a procedure to estimate the benefits and costs of implementing stream stabilization measures. The final section of this report, section five, presents information on the development of the organizational structure and administrative procedures which are being used to plan, coordinate, and implement stream stabilization projects and programs in western Iowa.
Resumo:
The Iowa Department of Transportation used a high molecular weight methacrylate (HMWM) resin to seal a 3,340 ft. x 64 ft. bridge deck in October 1986. The sealing was necessary to prevent deicing salt brine from entering a substantial number of transverse cracks that coincided with the epoxy coated top steel and unprotected bottom steel. HMWM resin is a three component product composed of a monomer, a cumene hydroperoxide initiator and a cobalt naphthenate promoter. The HMWM was applied with a dual spray bar system and flat-fan nozzles. Initiated monomer delivered through one spray bar was mixed in the air with promoted monomer from the other spray bar. The application rate averaged 0.956 gallons per 100 square feet for the tined textured driving lanes. Dry sand was broadcast on the surface at an average coverage of 0.58 lbs. per square yard to maintain friction. Coring showed that the HMWM resin penetrated the cracks more than two inches deep. Testing of the treated deck yielded Friction Numbers averaging 33 with a treaded tire compared to 36 prior to treatment. An inspection soon after treatment found five leaky cracks in one of the 15 spans. One inspection during a steady rain showed no leakage, but leakage from numerous cracks occurred during a subsequent rain. A second HMWM application was made on two spans. Leakage through the double application occurred during a rain. Neither the single or double application were successful in preventing leakage through the cracks.
Resumo:
Seal coat and chip seal treatments are commonly used as an economical treatment to provide a new surface to an old asphalt roadway. To be successful, the aggregate or chips must be held in place on the roadway by the asphalt binder over a long period of time. It is common, over time, that the binder becomes aged and brittle and loses its ability to be flexible and hold the aggregate in place. Modifiers have been introduced to extend the life and adhesion characteristics of asphaltic binders.
Resumo:
Some asphalt roadways tend to develop wheelpath ruts over time when exposed to heavy traffic. As the rutting increases in depth, the travel comfort and levels of safety decrease. A variety of remedies involving major or minor operations can be applied to eliminate ruts and renew the roadway surface. One of the simple remedies, called Ralumac microsurfacing, involves only a longitudinal band over the rut. For better coverage, ruts are filled initially and followed by a complete thin surface wearing cover over the roadway.
Resumo:
This report presents the results of research on the influence of trace compounds from rock salt deicers on portland cement mortar and concrete. An evaluation of the deicers in stock throughout the state showed that about ninety-five percent contained enough sulfate to cause accelerated deterioration of concrete. Of the impurities found in rock salts, sulfate compounds of calcium and magnesium were found to be equally deleterious. Magnesium chloride was found to be innocuous. Introduction of fly ash eliminated the damage to portland cement mortar caused by sulfates. When used with frost resistant Alden aggregate in fly ash concrete and exposed to a variety of deicer brine compositions, the concrete did not deteriorate after exposure. With the exception of a high calcium brine, the behavior of the frost-prone Garrison aggregate was independent of deicer treatment; the high calcium brine reduced frost damage with this aggregate. Two approaches to reducing sulfate deterioration from deicers are suggested as (1) limiting the amount of sulfate to about 0.28 percent, and (2) making concrete sulfate-resistant by using fly ash. Techniques for making existing concrete deicer-sulfate-resistant are essential to a practical solution.
Resumo:
Iowa DOT research in 1986, demonstrated that carbide tooth milling can produce an acceptable surface texture. Based upon that research, specifications were developed for "Pavement Surface Repair (Milling)". This specification was applied to reprofile a nine-mile section of badly faulted portland cement concrete (pcc) pavement on route 163 just east of Des Moines. The Profile Index (measured with a 25-foot California Profilograph) was improved from an average of 55.2 inches per mile prior to milling to 10.6 inches per mile after milling. The bid price was $0.75 per square yard for pcc containing limestone coarse aggregate and $1.21 for pcc containing gravel coarse aggregate. Carbide tooth milling should be considered as an acceptable alternate method of reprofiling even though there is some spalling of joints.
Resumo:
The Iowa Department of Transportation (IDOT) has been requiring Critical Path Method (CPM) schedules on some larger or more schedule sensitive projects. The Office of Construction's expectations for enhanced project control and improved communication of project objectives have not been fully met by the use of CPM. Recognizing that the current procedures might not be adequate for all projects, IDOT sponsored a research project to explore the state-of-the-art in transportation scheduling and identify opportunities for improvement. The first phase of this project identified a technique known as the Linear Scheduling Method (LSM) as an alternative to CPM on certain highway construction projects. LSM graphically displays the construction process with respect to the location and the time in which each activity occurs. The current phase of this project was implemented to allow the research team the opportunity to evaluate LSM on all small groups of diverse projects. Unlike the first phase of the project, the research team was closely involved in the project from early in the planning phase throughout the completion of the projects. The research strongly suggests that the linear scheduling technique has great potential as a project management tool for both contractors and IDOT personnel. However, before this technique can become a viable weapon in the project management arsenal, a software application needs to be developed. This application should bring to linear scheduling a degree of functionality as rich and as comprehensive as that found in microcomputer based CPM software on the market today. The research team recommends that the IDOT extend this research effort to include the development of a linear scheduling application.
Resumo:
This final report for Phase 1 of the research on epoxy-coated, prestressing strands in precast prestressed concrete (PC) panels has been published in two volumes. This volume, Volume 1--Technical Report, contains the problem description, literature review, and survey results; descriptions of the test specimens, experimental tests, and analytical models; discussions of the analytical and experimental results; summary, conclusions, and recommendations; list of references; and acknowledgment. Volume 2--Supplemental Report contains additional information in the form of summarized responses to the questionnaires; graphs showing the strand forces; figures showing the geometry of the specimens and concrete crack patterns that formed in the strand transfer length and strand development length specimens; and graphs of the concrete strains in the strand transfer length specimens, load-point deflections, and strand-slip measurements for the strand development length specimens.
Resumo:
An asphalt concrete (ACC) overlay is most often the rehabilitative effort used to maintain the serviceability of either an ACC or PCC pavement. The major problem in durability of this ACC overlay comes from reflective cracking. These cracks usually open, allowing water to enter the unsealed crack and strip the ACC in the overlay. The stripping of the ACC allows accelerated deterioration at the crack. Two engineering fabrics were evaluated in this project in order to determine their effectiveness in reducing reflective cracking. These two materials are: PavePrep, Contech Construction Products, Inc., and Pro-Guard, Phillips Fiber Corporation. A 4.2 km (2.6 mi) roadway in Audubon County was selected for the research project. The roadway was divided into eight test sections. Four of the test sections are conventional resurfacing. The other four sections are split between the two engineering fabrics (two Pro-Guard and two PavePrep). A 75 mm (3 in.) thick overlay was placed over the entire project.
Resumo:
Efforts are constantly being put forth by researchers, highway related industries and product suppliers to improve the life and performance of asphalt pavements. As a result of those efforts, a variety of asphalt modifiers have been developed and evaluated in experimental sections over the years. Evaluations of the polymer asphalt modifiers have been done and results were usually compared with conventional sections within each respective project. The research presented in this report is also a comparison of asphalt modifiers with each other as well as a comparison of a modifier with its respective conventional section, when they exist. Several of the modifiers showed some improvements in performance while others did not.
Resumo:
Disposal of used tires has been a problem throughout the United States. The 1991 Intermodal Surface Transportation Efficiency Act (ISTEA) requires the use of recycled rubber in asphalt concrete starting in FY94. A moratorium has delayed this requirement until FY95. The Iowa DOT has researched six projects using crumb rubber modifier in asphalt concrete using the wet process. This process involves using a blender-reactor to blend the asphalt cement and crumb rubber. Using the wet process the asphalt cement has to reach a hotter temperature, than is normally required, for reaction to occur. The wet process is also much more expensive than conventional asphalt. This research deals with using a dry process to incorporate crumb rubber into the asphalt concrete mix. The project was constructed by Western Engineering of Harlan, Iowa, on IA 37 between Earling, Iowa and US 59. It was completed in September 1993. Western Engineering used a double drum mixer to produce the crumb rubber modified asphalt concrete by the dry process. The production and construction went well with minor difficulty and the dry process is a less expensive procedure for producing crumb rubber modified asphalt concrete.
Resumo:
Fine limestone aggregate is abundant in several areas of the state. The aggregate is a by-product from the production of concrete stone. Roller compacted concrete (RCC) is a portland cement concrete mixture that can be produced with small size aggregate. The objective of the research was to evaluate limestone screenings in RCC mixes. Acceptable strength and freeze/thaw durability were obtained with 300 pounds of portland cement and 260 pounds of Class C fly ash. The amount of aggregate passing the number 200 sieve ranged from 4.6 to 11 percent. Field experience in Iowa indicates that the aggregate gradation is more critical to placeability and compactibility than laboratory strength and durability.
Resumo:
Two specialty cements are currently being marketed as a way to achieve portland cement concrete pavement opening strengths at less than 12 hours after placement. The cements are Pyrament from Pyrament/Lone Star Industries of Houston, Texas and Ideal Regulated-Set (RS) Portland Cement from Ideal Cement Company of Saratoga, Arkansas. The objective of the study was to evaluate the strength gain and durability of concrete produced with Pyrament and Ideal RS cement as Fast Track concrete. Mixes with 610 lb/cu yd (362 kg/cu m) cement were made and tested. Both Pyrament and Ideal RS are capable of producing pavement opening times less than 12 hours. Recent changes to Ideal RS cement have produced concrete flexural strengths of 550 psi (3792 kPa) at 4 hours in Iowa tests. Freeze/thaw durability of the concrete was not adversely affected by using either cement.
Resumo:
There are projects where opening the pavement to traffic in less than the 5 to 7 days is needed, but an 8 to 12 hour opening time is not necessary. The study examined fast track concrete with Type I cement and admixtures. The variables studied were: (1) cure temperature, (2) cement brand, (3) accelerators, and (4) water reducers. A standard water reducer and curing blankets appear to be effective at producing a 24 hour to 36 hour opening strength. An accelerator and/or high range water reducer may produce opening strength in 12 to 24 hours. Calcium chloride was most effective at achieving high-early strength.