93 resultados para Monitoring stations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water fact sheet for Iowa Department of Natural Resources and the Geological Bureau.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water fact sheet for Iowa Department of Natural Resources and the Geological Bureau.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water fact sheet for Iowa Department of Natural Resources and the Geological Bureau.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water fact sheet for Iowa Department of Natural Resources and the Geological Bureau.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This monthly report from the Iowa Department of Transportation is about the water quality management of Iowa's rivers, streams and lakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This monthly report from the Iowa Department of Transportation is about the water quality management of Iowa's rivers, streams and lakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This monthly report from the Iowa Department of Natural Resources is about the water quality management of Iowa's rivers, streams and lakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This monthly report from the Iowa Department of Natural Resources is about the water quality management of Iowa's rivers, streams and lakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Description and process of monitoring students with visual disabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Iowa EHDI High-Risk Monitoring Protocol is based on the Joint Committee on Infant Hearing 2007 position statement. Emphasis is placed on follow-up as deemed appropriate by the primary health care provider and audiologist. The Iowa protocol describes the follow-up process for children with risk factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this study was to evaluate the hydraulic performance of riprap spurs and weirs in controlling bank erosion at the Southern part of the Raccoon River upstream U.S. Highway 169 Bridge utilizing the commercially available model FESWMS and field monitoring. It was found based on a 2 year monitoring and numerical modeling that the design of structures was overall successful, including their spacing and stability. The riprap material incorporated into the structures was directly and favorably correlated to the flow transmission through the structure, or in other words, dictated the permeable nature of the structure. It was found that the permeable dikes and weirs chosen in this study created less volume of scour in the vicinity of the structure toes and thus have less risk comparatively to other impermeable structures to collapse. The fact that the structures permitted the transmission of flow through them it allowed fine sand particles to fill in the gaps of the rock interstices and thus cement and better stabilize the structures. During bank-full flows the maximum scour hole was recorded away from the structures toe and the scourhole size was directly related to the protrusion angle of the structure to the flow. It was concluded that the proposed structure inclination with respect to the main flow direction was appropriate since it provides maximum bank protection while creating the largest volume of local scour away from the structure and towards the center of the channel. Furthermore, the lowest potential for bank erosion also occurs with the present set-up design chosen by the IDOT. About 2 ft of new material was deposited in the area located between the structures for the period extending from the construction day to May 2007. Surveys obtained by sonar and the presence of vegetation indicate that new material has been added at the bank toes. Finally, the structures provided higher variability in bed topography forming resting pools, creating flow shade on the leeward side of the structure, and separation of bed substrate due to different flow conditions. Another notable environmental benefit to rock riprap weirs and dikes is the creation of resting pools, especially in year 2007 (2nd year of the project). The magnitude of these benefits to aquatic habitat has been found in the literature that is directly related to the induced scour-hole volume.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Phase II project follows a previous project titled Strategies to Address Nighttime Crashes at Rural, Unsignalized Intersections. Based on the results of the previous study, the Iowa Highway Research Board (IHRB) indicated interest in pursuing further research to address the quality of lighting, rather than just the presence of light, with respect to safety. The research team supplemented the literature review from the previous study, specifically addressing lighting level in terms of measurement, the relationship between light levels and safety, and lamp durability and efficiency. The Center for Transportation Research and Education (CTRE) teamed with a national research leader in roadway lighting, Virginia Tech Transportation Institute (VTTI) to collect the data. An integral instrument to the data collection efforts was the creation of the Roadway Monitoring System (RMS). The RMS allowed the research team to collect lighting data and approach information for each rural intersection identified in the previous phase. After data cleanup, the final data set contained illuminance data for 101 lighted intersections (of 137 lighted intersections in the first study). Data analysis included a robust statistical analysis based on Bayesian techniques. Average illuminance, average glare, and average uniformity ratio values were used to classify quality of lighting at the intersections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following a high wind event on January 24, 2006, at least five people claimed to have seen or felt the superstructure of the Saylorville Reservoir Bridge in central Iowa moving both vertically and laterally. Since that time, the Iowa Department of Transportation (DOT) contracted with the Bridge Engineering Center at Iowa State University to design and install a monitoring system capable of providing notification of the occurrence of subsequent high wind events. In subsequent years, a similar system was installed on the Red Rock Reservoir Bridge to provide the same wind monitoring capabilities and notifications to the Iowa DOT. The objectives of the system development and implementation are to notify personnel when the wind speed reaches a predetermined threshold such that the bridge can be closed for the safety of the public, correlate structural response with wind-induced response, and gather historical wind data at these structures for future assessments. This report describes the two monitoring systems, their components, upgrades, functionality, and limitations, and results from one year of wind data collection at both bridges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this project was to promote and facilitate analysis and evaluation of the impacts of road construction activities in Smart Work Zone Deployment Initiative (SWZDI) states. The two primary objectives of this project were to assess urban freeway work-zone impacts through use of remote monitoring devices, such as radar-based traffic sensors, traffic cameras, and traffic signal loop detectors, and evaluate the effectiveness of using these devices for such a purpose. Two high-volume suburban freeway work zones, located on Interstate 35/80 (I-35/I-80) through the Des Moines, Iowa metropolitan area, were evaluated at the request of the Iowa Department of Transportation (DOT).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Phase II project follows a previous project titled Strategies to Address Nighttime Crashes at Rural, Unsignalized Intersections. Based on the results of the previous study, the Iowa Highway Research Board (IHRB) indicated interest in pursuing further research to address the quality of lighting, rather than just the presence of light, with respect to safety. The research team supplemented the literature review from the previous study, specifically addressing lighting level in terms of measurement, the relationship between light levels and safety, and lamp durability and efficiency. The Center for Transportation Research and Education (CTRE) teamed with a national research leader in roadway lighting, Virginia Tech Transportation Institute (VTTI) to collect the data. An integral instrument to the data collection efforts was the creation of the Roadway Monitoring System (RMS). The RMS allowed the research team to collect lighting data and approach information for each rural intersection identified in the previous phase. After data cleanup, the final data set contained illuminance data for 101 lighted intersections (of 137 lighted intersections in the first study). Data analysis included a robust statistical analysis based on Bayesian techniques. Average illuminance, average glare, and average uniformity ratio values were used to classify quality of lighting at the intersections.